Could we make a Mars-sized Mars bar?
Keywords:
Chemistry, Astrochemistry, Food science, Mars, Mars barsAbstract
Making a Mars-sized Mars bar would be a truly astronomical feat. Due to its sheer size, materials from outer space would need to be used. This paper explores how and where the materials/ingredients for producing such a bar could be acquired and whether all necessary materials could be acquired/synthesised.
References
Williams, D.R. (2017). Moon Fact Sheet. [online] Nasa.gov. Available at: https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html [Accessed: 4th March 2024]
Mars, Incorporated (2024). MARS Chocolate Bar 51g. [online] Mars. Available at: https://www.marsbar.co.uk/products/chocolate-bar/mars-chocolate-bar-51g [Accessed: 4th March 2024]
Peterson, B.T. & Depaolo, D.J. (2007). Mass and Composition of the Continental Crust Estimated Using the CRUST2.0 Model. NASA ADS, [online] 2007, pp.V33A1161. Available at: https://ui.adsabs.harvard.edu/abs/2007AGUFM.V33A1161P/ [Accessed: 4th March 2024]
Chandrudu, S., Simerska, P. & Toth, I. (2013). Chemical Methods for Peptide and Protein Production. Molecules, vol. 18(4), pp.4373–4388. DOI: 10.3390/molecules18044373.
Mars, Incorporated (2024). MARS Chocolate Bar 51g. [online] Mars. Available at: https://www.marsbar.co.uk/products/chocolate-bar/mars-chocolate-bar-51g [Accessed: 4th March 2024]
Ehrenfreund, P. & Cami, J. (2010). Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth. Cold Spring Harbor Perspectives in Biology, vol. 2(12), pp.a002097. DOI: 10.1101/cshperspect.a002097
Dulieu, F., Amiaud, L., Congiu, E., Fillion, J.-H., Matar, E., Momeni, A., Pirronello, V. & Lemaire, J.L. (2010). Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Astronomy and Astrophysics, vol. 512, pp.A30–A30. DOI: 10.1051/0004-6361/200912079
Minissale, M., Congiu, E., Manicò, G., Pirronello, V. & Dulieu, F. (2013). CO2 formation on interstellar dust grains: a detailed study of the barrier of the CO + O channel. Astronomy & Astrophysics, vol. 559, pp. A49. DOI: 10.1051/0004-6361/201321453
García Martínez, J.B., Alvarado, K.A., Christodoulou, X. & Denkenberger, D.C. (2021). Chemical synthesis of food from CO2 for space missions and food resilience. Journal of CO2 Utilization, vol.53, pp.101726. DOI: 10.1016/j.jcou.2021.101726
Narancic, T., Almahboub, S.A. & O’Connor, K.E. (2019). Unnatural amino acids: production and biotechnological potential. World Journal of Microbiology and Biotechnology, vol. 35(4). DOI: 10.1007/s11274-019-2642-9.
Daranlot, J., Hincelin, U., Bergeat, A., Costes, M., Loison, J.-C., Wakelam, V. and Hickson, K.M. (2012). Elemental nitrogen partitioning in dense interstellar clouds. Proceedings of the National Academy of Sciences of the United States of America, vol. 109(26), pp.10233–10238. DOI: 10.1073/pnas.1200017109.
Navarro-Almaida, D., Le Gal, R., Fuente, A., Rivière-Marichalar, P., Wakelam, V., Cazaux, S., Caselli, P., Laas, J.C., Alonso-Albi, T., Loison, J-C., Gérin, M., Krämer, C., Roueff, E., Bachiller, R., Commerçon, B., Friesen, R., García‐Burillo, S., Goicoechea, J.R., Giuliano, B.M., Jiménez-Serra, I., Kirk, J.M., Lattanzi, V., Malinen, J., Marcelino, N., Martín-Domènech, R., Muñoz Caro, G.M., Pineda, J., Tercero, B., Treviño-Morales, S.P., Roncero, O., Hacar, A., Tafalla, M. & Ward-Thompson, D. (2020). Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, vol. 637, pp.A39–A39. DOI: 10.1051/0004-6361/201937180.
Delompré, T., Guichard, E., Briand, L. & Salles, C. (2019). Taste Perception of Nutrients Found in Nutritional Supplements: A Review. Nutrients, vol. 11(9), pp.2050. DOI: 10.3390/nu11092050.
Walton, N.J., Mayer, M.J. & Narbad, A. (2003). Vanillin. Phytochemistry, vol. 63(5), pp.505–515. DOI: 10.1016/s0031-9422(03)00149-3
Li, K. & Frost, J.W. (1998). Synthesis of Vanillin from Glucose. Journal of the American Chemical Society, 120(40), pp.10545–10546. DOI: 10.1021/ja9817747.
Mohamadi Alasti, F., Asefi, N., Maleki, R. & SeiiedlouHeris, S.S. (2019). Investigating the flavor compounds in the cocoa powder production process. Food Science & Nutrition, vol. 7(12). DOI: 10.1002/fsn3.1244.
Mumma, M.J., DiSanti, M.A., Dello Russo, N., Fomenkova, M.N., K. Magee-Sauer, Kaminski, C. & Xie, D.X. (1996). Detection of Abundant Ethane and Methane, Along with Carbon Monoxide and Water, in Comet C/1996 B2 Hyakutake: Evidence for Interstellar Origin. Science, vol. 272(5266), pp.1310–1314. DOI: 10.1126/science.272.5266.1310
Studymind (2019). Organic Synthesis - Organic Synthesis: Aliphatic Compounds (A-Level Chemistry). [online] Study Mind. Available at: https://studymind.co.uk/notes/organic-synthesis-aliphatic-compounds/ [Accessed: 4th March 2024]
Mortzfeld, F.B., Hashem, C., Vranková, K., Winkler, M. & Rudroff, F. (2020). Pyrazines: Synthesis and Industrial Application of these Valuable Flavor and Fragrance Compounds. Biotechnology Journal, vol. 15(11), pp.2000064. DOI: 10.1002/biot.202000064
Gray, T., Whitby, M. & Mann, N. (2017). Abundance in the Universe for all the elements in the Periodic Table. [online] periodictable.com. Available at: https://periodictable.com/Properties/A/UniverseAbundance.v.log.html [Accessed: 4th March 2024]
Ginsburg, A., McGuire, B., Plambeck, R., Bally, J., Goddi, C. & Wright, M. (2019). Orion SrcI’s Disk Is Salty. The Astrophysical Journal, vol. 872(1), pp.54. DOI: 10.3847/1538-4357/aafb71
Britannica (2013). interstellar medium. [online] Encyclopedia Britannica. Available at: https://www.britannica.com/science/interstellar-medium [Accessed: 4th March 2024]
Downloads
Published
How to Cite
Issue
Section
License
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. All content is licensed under a Creative Commons Attribution 4.0 International licence (CC-BY 4.0).