Journal of Physics Special Topics

An undergraduate physics journal

A6_1 Zap!.. and the Poles Are Gone!

D. Nutting, S. Mucesh, D. Watters and M. N. Chowdhury

Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH

November 22, 2016

Abstract

We consider using the most powerful laser available to terraform Mars by sublimation of polar dry ice. The increase in atmospheric concentration of CO_2 results in a surface temperature increase of 2.7×10^{-5} K.

Introduction

August 8th 2016, also known as the "Overshoot Day", marked the point at which humanity began consuming more resources than the Earth could regenerate naturally [1]. With the growing population and the increasing energy demand, the idea of colonising space in the near future will become a necessity. Due to its close proximity and the many similarities it shares with our home planet, Mars stands out as the most obvious candidate to establish a colony on. However a major hurdle is the extremely cold surface temperature of 218K [2]. We researched the possibility of raising the surface temperature by sublimiting the dry ice (CO_2) present at the Martian poles using the most powerful laser currently available.

Theory

Both polar caps are composed primarily of water ice with a thin layer of dry ice covering the top [3]. The mass of dry ice present at the north pole, $M_n = 1.3 \times 10^{15}$ kg, was calculated using the thickness of dry ice, $d_n = 1$ m, the radius, $r_n = 500$ km [4], and its density, $\rho = 1600$ kgm⁻³ [5] as:

$$M_n = \pi r_n^2 d_n \rho \tag{1}$$

Consequently the energy required to completely sublimate any dry ice, Q_n , can be calculated as:

$$Q_n = M_n c \Delta T + L_s M_n \tag{2}$$

where $c = 0.709 \text{ kJkg}^{-1}\text{K}^{-1}$ [6] is the specific heat capacity of dry ice at 175K, $\Delta T = 74.5\text{K}$ [2] is the temperature difference between the minimum annual surface temperature at the poles (120.15 K), and the sublimation point of CO₂ (194.65 K) and $L_s = 571 \text{ kJkg}^{-1}$ [5] is the latent heat of sublimation. This process is also used to get the energy required to sublimate the southern pole, Q_s , using $d_s = 8m$ and $r_s = 175\text{km}$ [4], giving a CO₂ mass of $M_s = 1.2 \times 10^{15}\text{kg}$.

The sublimation of the poles' dry ice could lead to a significant increase in the concentration of CO_2 within the atmosphere, resulting in the increase of the surface temperature due to a stronger greenhouse effect.

This influx of CO₂ will increase its radiative forcing, ΔF , which is the difference between the energy absorbed and radiated by Mars [8]. The change in surface temperature, ΔT_{surf} , can be found via:

$$\Delta T_{surf} = \lambda \Delta F \tag{3}$$

where λ has a value of 0.8 Km²W⁻¹ [8]. ΔF (Wm

 $^{-2}$) can be found using:

$$\Delta F = 5.35 ln(\frac{C}{C_0}),\tag{4}$$

where C_0 and C are the CO₂ concentrations in parts per million by volume (ppmv) in the atmosphere before and after sublimation respectively. The Martian atmosphere is composed of 95.97% CO₂. The percentage volume of CO₂ in the atmosphere gives the initial concentration as $C_0 = 959700$ ppmv, while the final concentration is found via:

$$C = \frac{0.96V + V_a}{V + V_a} \tag{5}$$

where $V_a = M_T / \rho_{co_2}$ is the volume of CO₂ added to the atmosphere, ρ_{CO_2} is the density of CO₂ (1.977 kgm⁻³), $V = 9 \times 10^{18}$ m³ [7] is the volume of the atmosphere and $M_T = M_n + M_s$ is the total mass sublimated from both poles.

Results

The final CO₂ concentration has a value of C = 950006 ppmv. The total energy required to sublimate both poles is $Q = Q_n + Q_s = 1.6 \ge 10^{21}$ J where $Q_n = 8.1 \ge 10^{20}$ J and $Q_s = 7.5 \ge 10^{20}$ J. The LFEX laser is currently the most powerful laser in the world with a peak output power of 2PW, delivering 150-200 J in one picosecond [9]. In optimal conditions such as complete absorption, a laser would be able to sublimate both CO₂ reservoirs in ~9 days with a continual output. Using Equation 3 we found that a CO₂ input of 1.3 $\ge 10^{15}$ kg into the atmosphere would lead to a surface temperature increase of 2.7 $\ge 10^{-5}$ K.

Discussion

The energy required to sublimate the poles is beyond human capabilities; this value is an underestimate due to simplified assumptions. The temperature change calculated is unrealistic as we have ignored re-condensation of CO_2 and atmospheric stripping due to solar wind. Another consideration is the evaporation of water ice which is 1000 times more abundant than dry ice. Evaporation of this would release a large amount water vapour into the atmosphere. Water vapour acts as a greenhouse gas and drives climate change much in the same way as CO_2 . The only difficulty in achieving such a feat is the length of time required, which is calculated to be ~1700 years.

Conclusion

The prospect of using the LFEX laser for terraforming Mars is not feasible. The power required, and the technological limitations of producing a continuously firing 2PW laser, prevents this technique from being practical.

References

- [1] http://www.overshootday.org/ accessed on 05/10/2016
- [2] https://en.wikipedia.org/wiki/ Climate_of_Mars accessed on 05/10/2016
- [3] http://www.nasa.gov/content/ dry-ice-moves-on-mars accessed on 05/10/2016
- [4] https://en.wikipedia.org/wiki/ Martian_polar_ice_caps accessed on 05/10/2016
- [5] https://en.wikipedia.org/wiki/Dry_ice accessed on 05/10/2016
- [6] http://www.engineeringtoolbox.com/ carbon-dioxide-d_974.html accessed on 05/10/2016
- W. H. A. Longman, K. Flatt, S. Turnpenney, M. Garreffa, A1_9 Terraforming Mars: CO2 Combustion, PST 13, (2014).
- [8] https://en.wikipedia.org/wiki/ Radiative_forcing accessed on 04/10/2016
- [9] goo.gl/T8HBVK accessed on 04/10/2016