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Abstract

We investigate the accuracy of using a simple numerical integrator (Euler Method) to find how a

charged particle moves in a magnetic field. We find that the error depends on the choice of time

step, but is not negligible for even small values, as such it is probably not the best method for this.

Introduction

Numerical integrators can be useful ways to
approximate real life situations. In this paper we
investigate a simple form; The Euler Method [1].
We evaluate the accuracy of this by applying it
to a specific situation - charged particles gyrating
in a magnetic field. In reality, the kinetic energy
of the particle is constant, but due to the error
of the integrator it increases over time. We will
use this increase to quantify the error.

Theory

We first need to find equations to describe the
motion of charged particles in a magnetic field.
Since this paper is more about numerical integra-
tion than deriving the expressions, we will just
quote them Eq.(1). We define the magnetic field
along the z-axis only, and that our particle has
some velocity with a component in this direc-
tion and also perpendicular. The components of
acceleration in each direction a are [2]:

ax =
qB

m
vy ay = −qB

m
vx az = 0 (1)

We also know that the kinetic energy of the par-
ticle at any given time is:

Ek =
1

2
m(v2x + v2y + v2z) (2)

We also choose units such that the charge q = 1,
the magnetic field B = 1 and mass m = 1. v is
the velocity and v⊥ is the velocity perpendicular
to the magnetic field.

Method

As briefly mentioned we will be using the Euler
Method. This means we find the acceleration
from Eq.(1), then multiply by a finite time step
dt to find the velocity and position [1]:

ax =
qB

m
vy

vx = axdt

x = vxdt

ay = −qB

m
vx

vy = aydt

y = vydt
We then repeat this process, putting the new

value back into the acceleration expressions i.e.
perform an iteration. We note that since az =
0, vz will stay constant and our trajectory will
move along the z-axis at a constant rate. The
choice of dt is related to how accurate our result
will be, since we are approximating a curve as
a repeated series of small straight lines (Figure
1). It could be chosen to arbitrarily accurate
precision, but this makes the process take longer.
However since we are running a simple case with
not too small dt we don’t need to consider this.



Figure 1: Diagram illustrating why the choice of time
step is important. The left is our approximation and the
right is the true curve. If we had a smaller time step, so
more lines, it would fit the curve better.

Results & Discussion

We code this process into a loop, such that
it will repeat as many times as we want. We
record the position each iteration so that we can
plot this at the end. We define the initial veloc-
ities vz = 1, v⊥ = 1. For this limited situation
we choose only a few different values of dt to il-
lustrate how the inaccuracy changes, rather than
trying to quantify how it changes in general.

Figure 2: Example particle trajectories in a magnetic
field as computed by the integrator. Left: dt = 0.03 with
1000 iterations. Right: dt = 0.003 with 10,000 iterations.
A 3D (top) and 2D (bottom) plot are shown for each.

We see that for a smaller dt, the particle
doesn’t “spiral out” as much. This is good be-
cause the spiralling out means that the particle
is gaining energy which is the inaccuracy intro-
duced by this method. We can calculate the ki-
netic energy of the particle Eq.(2), at each itera-
tion, which is slowly increasing due to error being
introduced, and plot a graph of how the energy

(which relates to error) increases over time. Due
to our choice of units the initial kinetic energy is
just Ek = 1, and anything above this is the error
on top. This means the gradient of the graph is
just the error introduced per step.

Figure 3: Kinetic energy of the gyrating particle over
time (step on the integration)

Technically the error exponentially increases,
but since each error is of order ∼ 10−6 and it
doesn’t run for too long, they don’t really com-
pound so we can approximate as a linear in-
crease. This lets us find the approximate error
per step which is shown in the legend. We also
note that the even for an arbitrarily small dt,
the error will never be zero. In general, when we
apply this method we must weigh up how much
error we are willing to accept, versus how much
time we want the simulation to run.

Conclusion

We find that, as expected, the error is depen-
dent on the time step. If we choose a smaller
time step, our error is less, however it is still not
a negligible error even for a very small step, and
for many iterations this would build up. In the
future we may wish to compare the errors intro-
duced by this method, and the errors from other
methods (such as leapfrog) to see which would
be a better choice for a given situation.
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