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Abstract

We investigate “The Impossible Planet” from Series 2, Episodes 8&9 of Doctor Who [1], a planet

in “geostationary” orbit around a black hole. We find that it might not be impossible, by looking

at the tidal forces on the planet and using simplified rotating black hole mechanics.

Introduction

In the eighth & ninth episodes of series two of
Doctor Who [1], David Tennant’s tenth doctor
and companion Rose Tyler land on a sanctuary
base on “the impossible planet” Krop Tor. They
say this planet is in geostationary orbit around
a black hole [1]. In this paper we will investigate
just how impossible this planet is, by considering
the orbital angular velocity of the planet in a
region where it could exist, and comparing this
to the limit of how fast a black hole can rotate.

Theory & Results

The main reason they give for why this planet
is impossible is that it is near a black hole, but
just being close to a black hole does not imme-
diately mean destruction for the planet [2]. The
planet would be destoyed when the tidal forces
on the planet exceed the force of the planet’s
own gravity holding it together. We define the
limit of how close the planet can get before being
ripped apart as the Roche Limit r [3]:
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Where m is mass, 1 and 2 are the black hole
and planet, and R2 is the planet radius. We do

not know values for the planet but the characters
appear to experience Earth-like gravity so we will
give the planet Earth-like characteristics. Also
using a typical stellar-class black hole mass of
∼ 5M⊙ [4], we find the Roche limit is r ∼ 9.5×
108 m. If we said that the planet was just stable,
such that is it orbiting at this exact distance (and
assume circular) we can find the orbital angular
velocity:
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G is the gravitational constant, and we find ω ∼
8.8× 10−4 rads−1.
We do not know any characteristics of the

black hole, except that it must be spinning if
the planet is in “geostationary” orbit - if that
would even be the correct term for this. Here we
just interpret it to mean that the black hole spin
and planet orbit have the same angular velocity
in their own frame. Given the black hole is spin-
ning makes this situation very complicated. We
will make a few simplifications. We essentially
treat the outer event horizon as the “surface” of
a normal sphere, and don’t consider the rotation
of spacetime caused by the black hole rotating.
We’ll say if this is a reasonable assumption later
on. We also assume the black hole is not charged.



The angular velocity of a particle at the sur-
face of the outer event horizon, ΩH , (in natural
units c,G = 1) can be said to be [5]:
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Where J is the angular momentum. We rear-
range to make this the subject
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If we convert Eq.(4) to SI units [6], use m1 ∼
5M⊙ like before, and use our interpretation of
geostationary (ΩH = ω) we find J ∼ 1.9 ×
1036 kgm2s−1. We also note that a black hole’s
angular momentum is limited in this way [5]:

J ≤ Gm2
1

c
(5)

This gives us a limit of 2.2× 1043 kgm2s−1, and
we can see this limit is larger than the actual J ,
hence the black hole could spin at this rate. We
also know the planet would not be destroyed by
tidal forces since the angular velocity we previ-
ously worked out was based on a region where
the planet could survive.
We can also check if the assumption about

treating it as a “normal sphere” was accept-
able, by comparing the radius of the outer hori-
zon to the Roche limit (how far our planet is).
The outer horizon for an uncharged black hole is
given by [5] (also converting to SI units [6]):
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Where a = J
m1c

. We find r+ ∼ 15000 m. This
is significantly less than the Roche limit (Eq.1)
r ∼ 9.5× 108 m where the planet is, so we think
that this was a reasonable assumption, at least
to first order.

Discussion & Conclusion

Using our simplifications of rotating black
hole physics we have shown that the impossible

planet might not be so impossible after all. We
have shown that for a stellar-class black hole,
a planet in a “geostationary” orbit, at a dis-
tance far enough away to not be destroyed by
tidal forces, does not break the angular momen-
tum limit (Eq.5). Whether or not this proves
the impossible planet could exist in reality is
another thing. We have ignored several other
factors which would impact whether life would
survive on the planet, such as radiation, temper-
ature of the planet etc. Perhaps the sanctuary
base located on this planet has some futuristic
technology which is able account for all these
problems. In future we may want to consider
more advanced black hole physics, such as a bet-
ter consideration of the black hole’s angular ve-
locity and inclusion of relativity, and see how this
affects our conclusion.
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