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Abstract

This paper analyses how a Bathyscaphe vessel, which uses gasoline to provide lift and weights and

air tanks to lower the vessel, can travel to the bottom of the Mariana Trench and return to the

surface again. When the air tanks are full, the vessel is neutrally buoyant on the surface with a

density of ρsurf = 1022 kg m−3. When the air tanks are flooded with water, the vessel becomes

negatively buoyant, with the vessel density now equal to ρsink ≈ 1100 kg m−3, thereby causing

the vessel to sink. Once it reaches the bottom, the weights are dropped which causes the vessel to

become positively buoyant, with the vessel density now equal to ρrise ≈ 1020 kg m−3.

Introduction

We previously proved that a hollow steel
sphere with a 1m radius was capable of with-
standing the pressure at the bottom of the Mar-
ianas trench. The sphere required a wall thick-
ness of 15.7 cm and had a mass of 13.1 tonnes
[1]. Transporting this sphere on a round trip
from the surface to the bottom of the ocean can
be done using a “bathyscaphe”[2].

Figure 1: An image showing the different components
of the bathyscaphe.

The bathyscaphe describes a steel sphere at-
tached underneath a float. The float consists of
gasoline “flotation fluid”, air tanks, and iron pel-
lets that act as weights. Gasoline is used for

flotation as its density is lower than the sur-
rounding water and therefore provides an up-
wards buoyant force. The air tanks keep the ves-
sel neutrally buoyant at the surface when they
are filled with air. When the vessel plans to
submerge, the air tanks are filled with water,
which increases the vessel’s density, and starts
the vessels descent. Finally, the weights are held
in a releasable compartment so that they can
be dropped once the vessel reaches the bottom.
Releasing the weights will decrease the vessel’s
density and allow it to return to the surface.

Equations

The overall density of the vessel is given by:

ρves =
M tot

V tot
(1)

where the total mass and volumes are given by:

M tot =
N∑
i=1

Viρi = V1ρ1+V2ρ2+ ...+VNρN (2)

V tot =
N∑
i=1

Vi = V1 + V2 + ...+ VN (3)



where ρi and Vi represent density and volumes
of the different components of the vessel respec-
tively. The vessel in this paper has 5 components
where ρ1 and V1 represents the sphere, ρ2 and V2

the container, ρ3 and V3 the weights, ρ4 V4 the
air tanks, and ρ5 and V5 the gasoline tank.

Values

The mass and volume of the sphere are 13100
kg and (4/3)π m3 respectively [1]. The mass of
the container is approximated to be the same as
the sphere, with a density of typical steel ≈7800
kg m−3. The weights are made of iron spheres
that are packed into two containers of 1 m3 each.
The density of iron is ≈ 7874 kg m−3. However,
the packing density of the spheres needs to be
accounted for by a factor of ao ≈0.74 [3].

Sphere Container Weights

Density
(kg m−3)

3130 7800 ao×7874

Volume
(m3)

(4/3)π 1.7 2.0

Mass (kg) 13100 13100 11650

Table 1: Table of density, mass, and volume. The bold
values are calculated by either multiplying or dividing the
other values in the same column using ρ = M/V .

The densities of air and gasoline are ρ4 = 1.225
kg m−3 and ρ5 = 800 kg m−3 respectively. The
volume of the air tanks and the gasoline tank
are fixed at a 1:9 ratio, therefore V4 = x m3 and
V5 = 9x m3. This is because the air tanks are
purely to keep the density of the vessel neutrally
buoyant at the surface before they are flooded
with water. The volume and density values for
the different components of the vessel outlined
above can be substituted into Eq. (2) and (3)
and the resultant terms then substituted into Eq.
(1) and rearranged into:

ρves =
(V1ρ1 + V2ρ2 + V3ρ3) + x(ρ4 + 9ρ5)

(V1 + V2 + V3) + 10x
(4)

Eq. (4) gives the density of the vessel as a func-
tion of the volume of the air tank, x.

Results

On the surface, the air tanks are filled with air
to keep the vessel neutrally buoyant. The vessel

density, ρsurf, must therefore be the same as the
water density ≈ 1022 kg m−3 [1]. Plotting Eq.
(4), shown in Fig. 2, finds that the volume of
the air tank must be 9.93 m3 for ρsurf = 1022 kg
m−3. Therefore, the gasoline tank is 89.4 m3.

Figure 2: A graph showing the vessel density against
air tank volume. Water density intercept at x = 9.93 m3.

The air tanks are filled with water when the
vessel decides to begin sinking, which will in-
crease the vessel’s density. The new density of
the vessel whilst it is sinking, ρsink, is calculated
by replacing the density of air with the density
of water. Therefore, using ρ4 = 1022 kg m−3 in
Eq. (4), the sinking density is ρsink ≈ 1100 kg
m−3. After reaching the bottom, the weights are
released which causes the weight container to fill
with water, thereby decreasing its density and
causing it to rise to the surface. The density of
the vessel whilst it is rising, ρrise, is calculated
by replacing the density of the weights with the
density of water. Therefore, using ρ3 = 1022 kg
m−3 in Eq. (4), the new density is ρrise ≈ 1020
kg m−3. This allows the vessel to rise to the
surface and complete its round trip.
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