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Abstract

Drag effects play an important effect in everyday life, but is most noticeable in ball games such

as baseball and football. In this paper, we determine the initial velocity and rotational velocities

required for a ball to come back to the thrower. This is done by considering the Magnus effect. We

find that these properties are proportional to each other, but the relationship between the object’s

mass and radius plays a bigger role than expected.

Introduction

The Magnus force is a drag force, resulting
due to the object’s spin. Air moves faster on
one side than the other, allowing for seemingly
gravity defying tricks. By considering the drag
forces on the particle and obtaining equations
of motion, we can find the required initial con-
ditions to throw a ball and have it return as a
result of its spin.

Theory

The Magnus force acts in the direction perpen-
dicular to the velocity and the axis of rotation of
the ball, with magnitude [1]:
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where rb is the radius of the ball, ωb is the ro-
tational velocity of the ball (or, its spin) and v
is the velocity of the ball. We consider the sce-
nario in which we pitch the ball parallel to the xy
plane. We assume that the Magnus (and drag)
force in the z-direction is negligible compared to
the force of gravity so that we can consider the
z direction and the xy plane separately.

First, we consider the deceleration of the ball
as it travels around in the xy plane, which is just
the drag force. From Newton’s Second Law,
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where CD is the drag coefficient and A is the
cross-sectional area. Re-arranging this gives us
a differential equation in v:

βv2 =
dv

dt
,where β =

ρairCDπrb
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(3)

Solving Eq. (3) and substituting for our initial
conditions, i.e. at t = 0, v = v0:

v(t) = − 1

βt− 1
v0

(4)

We assume ωb is constant with time, i.e. it
does not decay. The Magnus force acts as a cen-
tripetal force, so using Eqs. (1) and (4):
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,where γ =
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From the equations of motion with constant ac-

celeration, we have t =
√

2h
g , where h is the



height over which the ball falls, giving:
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(6)

r(t) gives the radius from centre of rotation of the
ball’s motion, which is an outwards spiral. We
assume that the point about which the motion
is circular, is constant and take it as our origin.

The ball is caught once it is within arm’s reach.
This can be expressed by equating r(t) to the
equation of the off center circle, centred on us.

r(t)2 = rc
2 − r(0)2 − 2r(t)r(0)cos(θ − φ)[2] (7)

where rc is the radius in which we can catch the
ball, r(0) = v0

γωb
from Eq. (6) and taking t = 0,

θ is the angle from the origin to some point on
the circle centred around us and φ is the angle
from the origin to the us, the center of the circle.
For simplicity, take φ = 0. Solving Eq. (8) and
simplifying:

r(t) = r(0) cos θ ±
√
rc2 − r(0)2sin2θ (8)

where we have 2 values due to the symmetry
of cosθ. Substituting into Eq. (7):

ωb = ± 1

rcγ

√
A2 + v02 − 2Av0 cos θ (9)

These two values correspond to the ball mov-
ing clockwise and counter-clockwise, which in
turn corresponds to the two possible values of
r(t).

Results

The parameters that are not associated with
the ball can be held constant: ρair = 1.225 kg
m−3 [3], h = 1 m (so that we can catch the ball)
and rc = 0.5 m so that the catch is easy.

However, we can try different values for the
parameters of the ball. Taking values for a base-
ball, a tennis ball [5] and a football [6], assuming
that velocities are high enough to be in turbulent
flow, i.e. CD = 0.47 [7], we produce the follow-
ing plot. Note that changing θ did not appear to
make a large difference to the shape of the plot.

Figure 1: Plots of ωb against vb for a baseball (rb =
0.036 m, m = 0.035 kg) a tennis ball (rb = 0.033 m,
m = 0.056 kg) and a football (rb = 0.11 m, m = 0.43 kg).

Discussion and Conclusion

For reasonable speeds, an increase in v0 corre-
sponds to an increase in ωb, as expected. How-
ever, at high v0 and ωb, we have an unexpected
peak; at these speeds our assumption of a con-
stant point of rotation breaks down. A calcula-
tion of r(0) in this scenario gives a value of order
10−1 m, confirming this.

Even in the low speed regime, we find that
despite the similar masses of the baseball and
tennis balls, the change in radius makes a signif-
icant difference to the shape of the plot. This
mass-radius relationship could be explored in a
future paper.
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