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Abstract

This paper aims to determine if diverting light with sound waves is practical. This is done by

constructing a model for a speaker power output based on mitigating drag. We then use the

results of “A1 4 Bending light with sound”(Warford et al., 2017) to determine whether the power

required is plausible. We find that the power output required is 1.501( a√
2
)3 MWm−2, where a is

the radius in terms of the displacement amplitude; this is within human possibility, but not within

practical application ranges.

Introduction

The paper “A1 4 Bending light with sound”
(Warford et al., 2017) gives a sound wave require-
ment for the bending of light. Utilising these
requirements, we treat the wave like a series of
optical fibres and work out if any kind of light-
path manipulation is plausible.

Theory

If we treat each space between two peaks in
a sound wave as optical fibres, then in order to
change the path of light, the sound wave-fronts
need to provide a curved path around which
the light can travel. According to the Huygens-
Fresnel principle, this can be done with an aper-
ture size equal to, or smaller than, the wave-
length.

However, due to divergence, the intensity of
the wave (I), and hence the pressure amplitude
(P0), will decrease with distance from the source
(r); this will result in a decreasing refractive in-
dex. This can be reduced using funnels, however
the final opening must be larger than the wave-
length of the sound. The easiest minimisation to

achieve would be reducing the divergence by a
factor of a half (i.e. direct all the sound in front
of the speaker).

The intensity of a sound wave is proportional
to the square of its pressure amplitude. The in-
tensity diverges as such:

I(r) ∝ 1

Ωr2
∝ P0(r)2 =⇒ P0(r) ∝ 1

r
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1

Ω
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Where Ω is the solid angle the sound is projected
into from the source.

In order to relate this to the properties the
speaker outputs, we will consider the P0 at the
aperture:
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Where rs is the radius of the aperture (assuming
circular).

In order to find how physically plausible the
case is, we will consider the power required for
the speaker to produce a wave. We will model
the speaker as a thin plate oscillating in air.



We assume that the energy associated with
moving the plate itself is negligible in compari-
son to the drag force acting on the plate (plate’s
mass is small). The power is now what is re-
quired to maintain the waveform in the presence
of drag. Thus, the equations of motion are:

x(t) = ∆xsin(ωt) ··· x′(t) = ω∆xcos(ωt) (3)

=⇒ x′(t) = ∆xω cos

[
arcsin

(
x(t)

∆x

)]
(4)

With the drag force,

Fd =
CdρAv

2

2
=
CdρA

2
x′(t)2 (5)

Where Cd is the drag coefficient and A is the
cross sectional area. Also, the density is treated
as constant in this case, to give a maximum es-
timate.

We can get the average power from these equa-
tions by integrating the force over the distance
to get the work done, and then divide that by
the relevant time interval.

Bearing in mind the symmetries of the sinu-
soidal waveform, we need only consider the case
between 0 ≤ t ≤ 1

4f , (0 ≤ x ≤ ∆x). Thus, using
Eq.(4) and Eq.(5):

∆E =

∫ ∆x

0
Fd dx =

CdρA

3
∆x3ω2 (6)

And so,

pavg =
∆E

∆t
=

16π2CdρA

3
∆x3f3 (7)

Where pavg is the average power.

Results and discussion

To get the power required for the standard
case discussed in Warford et al., we use Eq.(7)
and substitute in the values from that case,
∆x = 1.57 m and ∆x = 6.37 Hz, to get the
power. We will consider the power required per
unit area of speaker.

Taking a drag coefficient of a plate at Cd =
1.98 and the density of air as 1.225 kgm−3, we
get pavg = 1.501 MW m−2.

When considering divergence, we can use
Eq.(2) to find the power required to get the same
effect a certain distance away. If we take Ω = 2π;
rs as half one wavelength (Huygens’ principle),
rs = 4∆x

2 ; and consider r = a∆x:

P0(r) = P0(rs)
rs
r
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Since, (from Warford et al. [1])

P0(rs) = 2πfρv∆x, ··· pavg ∝ P0(rs)
3 (9)

Then we can say, to maintain the same n0 at a
distance a∆x away, the power needs to increase
by:

pavg(r)

pavg
=

a3

2
√

2
(10)

So, we see that we need to increase f∆x by a
factor of a√

2
. Thus, the power will increase by

a factor of ( a√
2
)3. So, for a = 3, p = 9.55 ×

1, 501, 000 = 14.3× 106 = 14.3 MWm−2.
In either case the power requirements are huge

per unit area. They may become more plausible
with a very small area speaker, however, it will
still require a lot of power to be possible.

Conclusion

In conclusion, this paper has found that the
power required for a speaker that bends light
would be relatively high. However, here we have
treated density as constant, which will not be
the case; this approximation gets worse the faster
the speaker has to travel, as air doesn’t instantly
enter the space the speaker has cleared. This
will decrease our result for power a substantial
amount.

Further research could be done into the ac-
ceptance angles of these cases, a more thorough
analysis of the power requirements and the loss
at bends.
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