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Abstract

In this paper we calculated the maximum mass that could be fired from a 32 MJ railgun to strike

the surface of the Moon to be 0.52 kg, assuming an airless Earth. The muzzle velocity of the

projectile was found to be 11.1 kms-1and the speed at which it would hit the surface of the moon

is 1.90 kms-1.

Introduction

In July 2017 the U.S. Office of Naval Research
(ONR) announced its new electromagnetic rail-
gun was ready for field demonstrations.[1] Rail-
guns fire projectiles by using electromagnetic
forces rather than explosives or propellant as
typical ballistic weapons do. This method allows
the projectiles to reach very high speeds. In this
report we shall examine the scenario of whether
the railgun revealed this year is powerful enough
to fire a projectile to hit the Moon.

Theory

Railguns are operated by running a current
along a pair of parallel rails with a sliding ar-
mature between them. The magnetic field gen-
erated by the induced rails accelerates the ar-
mature, and thereby the projectile attached to
it, to an enormous velocity. The ONR’s railgun
is currently testing 20 MJ and will be using 32
MJ to launch projectiles by the end of the year.
The railgun currently fires BAE Systems’ Hyper
Velocity Projectile, however, a gun could be cre-
ated that fires different projectiles with the same
energy.[1] To determine the projectile’s ability to
reach the Moon we shall use the following equa-

tions [2]; the first is the kinetic energy equation:
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The equation for gravitational potential en-
ergy:
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And the vis-viva equation:
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Where G is the gravitational constant, M is
the mass of the body exerting the gravitational
force; m is the mass of the projectile; a is the
semi-major axis of the orbit; v is the velocity
of the projectile and r is the distance from the
centre of the body.

Results

The most efficient orbit to hit the moon is de-
picted in Fig.1. The gun would shoot at 90o to
the surface of the Earth. To find the maximum
mass that can be fired to the Moon, assuming
an airless Earth, we must first find the energy
to reach the equipotential point between the two
bodies. This is the point where the gravitational



potentials are equal, after this the Moon’s grav-
ity will become dominant and pull in the projec-
tile.

Figure 1: The most efficient orbit to reach the Moon.

Using Eq.2 for the Earth and Moon, we can
obtain a ratio between the distances from the
Earth and Moon. We find that the distance from
the equipotential to the centre of the Earth is 81
times the distance from the equipotential to the
centre of the Moon. These values are 3.88 × 108

m and 4.79 × 106 m respectively, using the semi
major axis of the Moon (3.84 × 108 m) and the
radii of the Earth and Moon: 6.37 × 106 m and
1.74 × 106 m respectively. [4] [5]

Using Eq.2, we know that the energy to reach
the equipotential is equal to the gravitational po-
tential at the equipotential minus the gravita-
tional potential at the surface, where the railgun
is fired. Since the energy that the gun fires at is
known (32 MJ), we can rearrange Eq.2 to find
the maximum mass that can be fired:
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Where req is the distance from the centre of the
Earth to the equipotential and rE is the radius
of the Earth. This mass is calculated as 0.52 kg.
Using Eq.1, the muzzle velocity is therefore 11.1
kms-1. We can also find the speed at which the
projectile will strike the Moon. First we find the
semimajor axis, a, of the elliptical orbit, which
is the mean of the maximum and minimum of

the ellipse: 3.88 × 108 m (the distance to the
equipotential) and 6.37 × 106 m (the radius of
the Earth) respectively. The value of a is there-
fore 1.97 × 108 m. Next we use Eq.3 to find the
velocity at this point in the orbit, which is 176.8
ms-1. Using Eq. 1, where mass is 0.52 kg, the
kinetic energy at the equipotential is 8127.1 J.
At this point, the bullet has entered the Moon’s
sphere of influence and the gain in energy can be
calculated by finding the difference in gravita-
tional potential energy at the equipotential and
the surface of the moon using Eq.2. The poten-
tial energy at the equipotential is 5.31 × 105 J,
and at the surface of the moon is 1.47×106 J, so
the gain in kinetic energy is 9.34×105 J. Adding
this to the kinetic energy of the equipotential
and using Eq.1, rearranged for velocity, we find
that the 0.52 kg projectile will strike the surface
of the Moon with a velocity of 1903.6 ms-1.

Conclusion

In this paper, we have modelled the situation
for an airless Earth but in reality it is likely that
such a light object would be destroyed by aero-
dynamic heating as 11 kms-1 is the lower limit for
meteors to burn up in the Earth’s atmosphere.
[3] The railgun is being fired at sea level where
the air density is much higher. The air around
the projectile would ionise due to friction, cre-
ating a brief flash of a column of plasma. On
an airless body, or those with a tenuous atmo-
sphere, this would not occur. An interplanetary
railgun is viable in orbit or on an airless body
provided one can generate enough energy.
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