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Abstract 
During the BBC’s classic science fiction show Doctor Who, the Doctor and his assistant Rose land the 
TARDIS on a planet that is orbiting a black hole – an ‘impossible situation’ according to the Doctor. This 
paper calculates the minimum radius and required angular momentum of the closest stable circular 
orbit around a Schwarzschild black hole of comparable mass to the one at the centre of the Milky Way 
(named Sagittarius A*). The minimum radius is found to be 3.54x10

10
m while the angular momentum 

required to sustain this orbit is 2.04 x10
10

m
2
s

-1
kg

-1
.  

 

 
Introduction 
During the Doctor Who episode entitled ‘The Impossible Planet’ the Doctor and Rose land on a 
planet orbiting a black hole. This paper sets out to derive the closest stable circular orbit of a black 
hole with a similar mass to the one at the centre of our galaxy (Sagittarius A*) and the angular 
momentum the ‘Impossible Planet’ would require to sustain this orbit. The paper assumes the black 
hole is spherically symmetric, uncharged, non-rotating and in empty space [1]. Under these 
conditions, the curvature of space-time due to the black hole can be described by the Schwarzschild 
metric   : 

       
   

   
          

   

   
 
  

                               

Here   is the distance from the origin (the centre of the black hole),   is the inclination from the 
vertical axis,   is the azimuthal angle ‘around’ the axis,   is time,   is the gravitational constant - 

    x10-11          ,   is the mass of the black hole and   is the space-time interval. This paper 
first finds the Lagrangian of the Schwarzschild metric in order to derive an equation for the radial 
motion of an orbiting object. From this an equation for the angular momentum of an orbiting body is 
found. Finally the minimum radius is calculated by considering the energy of the system.   
 
Calculation of the minimum radius and required angular momentum 
Assuming the orbit is in a plane and setting   equal to 90°, the     term in (1) is equal to 0 and the  
      term is equal to 1. Furthermore, the space-time interval   is equivalent to a minimum length 
scale or alternatively a geodesic [2]; the path followed by a circular orbit in a spherically symmetric 
space-time. The four-velocity (the tangent vector of the worldline, or path, of an object in space-
time [1]) of this circular orbit is therefore equal to   differentiated by the time elapsed along the 
geodesic followed by a massive particle (a time-like geodesic). This is the proper time   [1]. The 
kinetic energy per unit mass is therefore equal to the four-velocity squared multiplied by ½.  
 
Due to the fact there is no ‘potential energy’ term in the metric [2], the Lagrangian is given solely by 
the ‘kinetic energy’ term and is given below   : 

  
 

 
 
  

  
 
 

  
 

 
 
 

 
  

  

  
 
 

 
  

 
 
  

  
 
 

            

where m =      . In order to find an expression for the radial motion of a particle orbiting in 
Schwarzschild space-time, the Euler-Lagrange differential equation must be evaluated for both   
and  . The Euler-Lagrange differential equation is given by   : 
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where              and for the Schwarzschild metric;     ,     ,      and     . 
Evaluating (3) for   and   gives the following expressions: 

    
  

 
   

   

   
         

  

 
   

  

  
       

  
   

   
         

  

  
              

where   and   are constants. It is apparent   is equal to angular momentum per unit mass. On the 
other hand   is the relativistic energy per unit mass of a particle [4]. Substituting the expressions for 
  and   into (2) and rearranging for          yields: 

 
  

  
 
 

          
  

  
    

  

 
         

      

where      is equal to the effective potential [4] of the orbit. For a circular orbit          = 0 due to 

the fact r( ) = constant. This means   =      and the energy lies along an effective potential curve 

[4]. Assuming there are no external forces, the total energy   is required to be constant during an 
orbit and therefore it should not change with  . Hence          is equal to 0 which results in the 

expression:   
              

  
            

Using (7), both   and   can be derived.   is found using the quadratic formula: 

  
  

  
 
 

 
       

  

  
             

For        , the answer is complex hence there is no solution. Above this value, there are two 
solutions corresponding to the   sign, which in turn correspond to the maxima and minima of      

[4]. Minima correspond to stable orbits, while maxima correspond to unstable orbits. When 
       , this represents a point of inflection and is the closest stable circular orbit to the black 
hole [4]. However, due to the fact the orbit lies on an inflection point, a small alteration towards the 
black hole would cause the object to fall inwards. Using (8), when        ;     . 
 
Assuming Sagittarius A* has a mass of 4 million solar masses [5], this corresponds to a radius of 
3.54x1010m. The angular momentum per unit mass required to maintain this orbital radius around 

Sagittarius A* is given by       and is equal to 2.04 x1010m2s-1kg-1. 
 
Conclusion 
To conclude, provided ‘The Impossible Planet’ had a minimum angular momentum per unit mass of 
2.04 x1010m2s-1kg-1 , it could orbit as close as 3.54x1010m to a Schwarzschild black hole with the same 
mass as Sagittarius A*, without falling inwards. However this orbit is only marginally stable and the 
tiniest alteration could cause the planet to fall towards the event horizon. Further research could be 
undertaken into the energy required to sustain such an orbit.  
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