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Abstract
Railguns are projectile firing devices that operate on the basic principles of electro-magnetism. In this
paper we describe a novel method of simulating the dynamics of such a gun by solving a system of
differential equations numerically. We then use this method to explore the effect of back EMF on railgun
dynamics.

Introduction & Theory
A railgun is a projectile weapon consisting of two par-
allel rails connected to a power supply. A projectile
is placed on these rails and the bridge that it creates
completes the circuit. The moving charges in the pro-
jectile then interact with the magnetic field produced
by the current in the rails, accelerating the projectile
along the rails. This paper analyses the dynamics of
the railgun problem and suggests a numerical approach
to modelling the time evolution of a railgun system.
To begin we must derive the force that a railgun pro-

jectile is propelled by. The Biot-Savart law gives the
magnetic field B at a distance r from a semi-infinite
wire carrying current I as B = µ0I/4πr [1], where µ0

is the permeability of free space. We make the semi-
infinite wire approximation because at the ends of our
rails they would - to a close projectile - essentially seem
to extend to infinity. Clearly more accuracy can be ob-
tained by assuming a finite wire, though this is beyond
the scope of this paper.
In the case of two parallel wires separated by a dis-

tance d, the field at distance r from one wire is simply
the sum of the fields for the 2 individual wires. At a
point directly between our 2 rails, the field is hence:
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The average field along a line perpendicular to the 2
wires that connects them directly is therefore given by
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where A is the radius of the rail. Here we have defined
D = d − 2A as the distance between the wires - the
width of the projectile. The use of this integral implies
that the projectile is infinitely thin - which may not
be a valid approximation to make if the projectile is of
a similar thickness to the rails. The existence of the

Lorentz force implies that a current carrying wire of
length D in a magnetic field Bavg experiences a force
Favg = BavgID [2]. By combining this result with
equation 3 we find that the projectile experiences a
mean force

Favg =
µ0I
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)
. (4)

Other forces on the railgun include friction and air re-
sistance, though for the purposes of this paper we as-
sume that they are negligible.
Of course, propulsion is not the only effect of elec-

tromagnetism on the railgun system. We also must
consider the effects of back EMF - voltage induced by
the motion of the projectile that acts to reduce the
total voltage across the rails. Several simplifications
have already been made to our railgun system and it is
tempting to disregard back EMF in the same fashion.
Hence by modelling the back EMF in our simulation
we aim to decide whether or not it does have a great
effect.
To begin considerations of back EMF it first must be

noted that a general railgun design includes a capacitor
such that a high voltage and hence high current can be
obtained from a standard power source. Therefore, the
voltage applied to the circuit changes with time. The
voltage across the circuit may be expressed as V =
Vc − E where Vc is the voltage across the plates of the
capacitor and E is the back EMF of the circuit.
We must also consider that the resistance in the wire

changes with time. To see this, consider the resis-
tance of a length of wire of length l, cross-sectional
area A and resistivity ρ - a quantity which is given by
R = ρl/A. The resistance of the entire railgun system
is simply that of the projectile plus that of the rails.
Hence at a position x along the rails the resistance of
the railgun circuit - assuming both projectile and rails
are of the same resistivity - is

R(x) = ρ(2x/(πA2) +D/(πa2)). (5)

Thus as the railgun accelerates along the rails the resis-
tance increases. These two facts mean that over time
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we expect the current and hence field of the gun to
drop off rapidly - something which greatly complicates
our back EMF considerations.
Lenz’s law states that a changing magnetic flux pro-

duces an EMF that attempts to cancel out the change
in flux. The magnitude of this EMF is given by
E(t) = dΦ

dt where Φ is the magnetic flux [3]. We may
write the flux through the current loop of our railgun
(consisting of the two rails, the projectile and supple-
mentary wiring at the ends of the rails) as Φ = BxD.
To differentiate this we must observe that - as stated
above - the value of B is varying with time and hence
we find - using the product rule - that

E(t) = ḂxD +BẋD. (6)

ẋ is simply the velocity of our projectile, but we must
clearly calculate a value for Ḃ. Differentiating equation
3 and using I = V/R, we find

Ḃ =
RV̇ − V Ṙ

R2

µ0

2πd
ln

(
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A

)
. (7)

Since V = Vc − E it must be true that V̇ = V̇c − Ė .
We hence substitute equation 7 into equation 6 and
rearrange to find an differential equation describing the
rate of change of E ;

Ė =
R

kx

(
Bẋ− E

D

)
+

Ṙ(E − Vc)

R
+ V̇C . (8)

Here we have defined k = (µ0ln((d−A)/A))/2πd. This
back EMF serves two purposes. Firstly it reduces the
voltage across the rails and hence reduces the current
and force in the gun. Secondly it reduces the effective
plate voltage and hence discharge rate of the capacitor.
Given this issue aswell as that of time-varying resis-

tance, it is prudent to begin our treatment of capacitor
discharge from first principles. Considering both the
back EMF and plate voltage,the current in the system
at time t can be described by

I(t) = (Vc(t)− E)/R(t) =
dQ

dT
, (9)

where Q represents charge. For a capacitor, the rela-
tion

Q(t) = CVc(t), (10)

where C is capacitance holds true. This can be rewrit-
ten as Q = CI(t)R(t)−CE(t) and then combined with
9 to give

dQ

dT
=

Q(t)

CR(t)
− E(t)

R(t)
. (11)

From 10, we find that Q̇(t) = CV̇c(t) and hence

dVC

dT
=

Vc(t)− E(t)
CR(t)

. (12)

We hence have a differential equation which we may
integrate to study this discharge of a capacitor in a
circuit of varying resistance.

Method
An assessment of the system of equations derived above
shows that it is not trivial to solve them analtically as
they all rely on each other in a complex fashion. We
hence set up a standard 2nd order Runge-Kutta inte-
grator to solve the problem numerically. This method
was chosen for its simplicity and accuracy [4]. It re-
quires that we have a differential equation for each
evolved variable that we cannot calculate directly at
time t. We can distill the railgun problem down to 4
such critical variables; Vc, E , x and ẋ. We already have
derived such differential equations for Vc and E - equa-
tions 12 and 8 respectively. The time derivative of ẋ
is simply the force (equation 4) divided by the mass
of the projectile and the time derivative of x is simply
ẋ. Hence we have established a complete description
of the evolution of the railgun system - negating losses.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

0
50

10
0

15
0

20
0

Simulation time / s

V
ol

ta
ge

 / 
V

Fig. 1: Evolution of capacitor voltage (red) and back EMF
(black) over time.

Discussion & Conclusion
An implementation of the above method was written in
R and tested. To explore the properties of our method
further, a plot was made of E and Vc over time (see
figure 1). It is immediately clear that our assumption
about back EMF is correct as the figure shows that it
rises to a magnitude that is significant compared to the
capacitor voltage. For contrast, we note that running
the simulation from figure 1 without back EMF results
in a 17.5% increase in final projectile velocity.
To conclude, we have shown that railgun dynamics

can be approximated numerically. In doing so we have
also demonstrated the importance of back EMF in a
railgun system. In future work we will use our method
to investigate the practicalities of a portable railgun
system.
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