
Journal of Physics Special Topics

A2 1 The fast inverse square root in scientific computing

T.O. Hands, I. Griffiths, D.A. Marshall, G. Douglas

Department of Physics and Astronomy, University of Leicester. Leicester, LE1 7RH.

Oct 20, 2011.

Abstract
Scientific computing often requires the calculation of square roots - a process which is very expensive in
terms of processing time compared to most other floating point operations. In this paper we examine the
use of a faster but less accurate square root algorithm in scientific computing using N-body simulations
as an example. The results show that the the speed increase afforded by the faster algorithm is not offset
by the reduction in accuracy, and hence an alternate approach is suggested.

Introduction
Finding the square root of a floating point number is
often the most computationally expensive part of a sci-
entific code, with commonly implemented algorithms
often requiring several iterations of a solver to perform
the operation. Pushes to improve the speed of such al-
gorithms have largely come from the computer games
industry, where square root operations are required to
unitise vectors for lighting. This operation requires di-
viding each component of a vector by its magnitude -
the calculation of which requires a square root to be
computed. Hence computer game developers have cre-
ated novel algorithms to compute this inverse square
root [1].

N-body simulations face a similar challenge to com-
puter games. The most commonly used method of find-
ing the acceleration of each body i in such a simulation
is to compute each component of the vector given by

ai = −G
∑
j 6=i

mjrij
|rij |3

. (1)

Here G is the gravitational constant, mj is the mass
of body j and rij = ri − rj is a vector connecting
the two bodies i and j (where ri denotes the position
vector of body i). The vector magnitude in the denom-
inator of the fraction is where this force computation
incurs most of its computing cost. Hence the aim of
this paper is to determine whether or not a faster but
approximate inverse square root would be appropriate
in such simulations. Fortunately, it is no longer nec-
essary to rely on custom algorithms for such optimi-
sations. With the advent of the SSE (Streaming Sin-
gle instrutction, multiple data Extensions) instruction
set, an instruction called rsqrtss became available on
nearly all modern x86 and x64 processors which per-
forms such a square root [2]. Previous testing indicates
that this method may be upto 10x faster than a stan-
dard square root [3]. It is this instruction which we
test against the standard and more accurate sqrtss in
our N-body code.

Method
To test the efficiency gains made by using the fast in-
verse square root, a simple N-body integrator was cre-
ated. This program used a leapfrog integrator for accu-
racy, unsmoothed forces and the simulation units were
chosen such that G = 1.
A test problem was set-up using 2 bodies of equal

mass m = 0.5, each at a distance r = 0.5 from the
origin with both bodies starting on the x axis. The
two body circular orbit equation used to set-up the
velocities of the bodies is as follows

G(mi +mj) =
4π2a3

T 2
, (2)

where a is the distance between the two bodies and T
is the period of the bodies [4]. Using this equation with
the values relevant to our set-up, along with

v =
2πr

T
, (3)

(where r is the distance of the body in question from
the barycentre of the two bodies) yields an initial ve-
locity for the first body of vy = 0.5 and vy = −0.5 for
the second. With these conditions, 25 simulations were
run using both the normal square root and the fast
reciprocal square root in order to measure the speed
increase. The implementation was such that the only
difference in the two methods was the calculation of
the square root - every other operation remained iden-
tical. The simulations were run over a time period
of 0 - 200 in the time units of our simulation using a
timestep τ = 0.001. A further simulation was run until
t = 10000 using τ = 0.01 to observe the difference in
the accuracy of each simulation.

Method Mean time to complete run (ms)
sqrtss 38.78
rsqrtss 37.05

Table 1: Mean times to perform the run of simulations from
20 data points

p-1

The fast inverse square root in scientific computing, Oct 20, 2011.

Method Mean distance (|r̄|) from origin to body 1 Magnitude of 0.5− |r̄|
sqrtss 0.5000264 0.0000264
rsqrtss 0.4998505 0.0001495

Table 2: Mean distance from the origin to body 1 over the whole simulation time

0 50 100 150 200

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Simulation Time

D
iff

er
en

ce
 in

 x
 p

os
iti

on
s

Fig. 1: Demonstration of the discrepancy in position caused by using the fast inverse square root. The graph shows the
difference in the x axis position of one of the two bodies between the two simulations over time.

Results
Table 1 demonstrates the mean results of the 25 timing
runs. The rsqrtss method is seen to be 4.7% faster.
This is more in line with the figures presented in [5]
and is perhaps to be expected since there are many
operations other than the square root happening dur-
ing each iteration of the simulation. Table 2 shows
the mean position of one of the two bodies in the sim-
ulation relative to the origin. Since the orbit of the
bodies is circular we expect |r| to be 0.5 throughout
the simulation. In reality we must remember that the
relatively large time step of the simulation as well as
rounding errors in calculations do result in the orbits
becoming disturbed over time. It is, however, still clear
that the inverse square root method is not as effective
at conserving the orbital radius - the normal square
root method is seen to conserve this quantity to an
extra decimal place. Figure 1 shows the difference be-
tween the x positions of body 1 in the two simulations
over time. If the simulations were equally accurate, we
would expect the position of body 1 to be integrated
in an identical manner, but clearly this is not the case.
There is a very large error in position caused by the
use of the rsqrtss instruction which grows with time.
Indeed, over time the orbit in this simulation precesses
to the extent that it is on the opposite side of its orbit
to what we might expect.

Conclusion
It is clear that the rsqrtss method is not suitable for

scientific use. The errors caused by using this method
over time are very large and mean that the N-body
code no longer provides an accurate simulation of the
actual physics. Aside from this, the 4.7% speed in-
crease that we observed when using this method in
the context of an entire N-body code is insignificant
enough that even the smallest loss of accuracy would
be enough to stop us using the method in a scientific
code. A promising alternative to such a method which
may improve on this speed increase and loss of accu-
racy is proposed in [6], wherein using a look-up table
to seed an iterative solver results in a highly accurate
and fast square root operation.

References

[1] C. Lomont, www.lomont.org/Math/Papers/2003/

InvSqrt.pdf, (unpublished).
[2] http://siyobik.info/main/reference/

instruction/RSQRTSS (Retrieved 20/10/2011).
[3] http://assemblyrequired.crashworks.org/2009/

10/16/timing-square-root/ (Retrieved 20/10/2011).
[4] http://www.ottisoft.com/Activities/Two-body\

%20problem.htm (Retrieved 20/10/2011).
[5] http://assemblyrequired.

crashworks.org/2009/10/20/

square-roots-in-vivo-normalizing-vectors/

(Retrieved 20/10/2011).
[6] J.A. Pineiro, J.D. Bruguera, IEEE Transactions on

Computers 51, 1377 (2002).

p-2

