# Journal of Physics Special Topics 

# P1_10 Moving the Earth 

Matthew James, Sarah Botterill, Emma Comber, Daniel Spence<br>Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH.

February 6, 2011


#### Abstract

Conservation of linear and angular momentum is used in this article to discuss whether human strength and power alone can move the Earth. It is found that the difference in mass between humans and the planet is far too large to have a significant effect.


## Introduction

This article discusses whether the entire population of people is actually powerful enough to physically, and momentarily displace the Earth by the means of transferring momentum. It must be mentioned that the Earth and the people lie in a closed system where any displacement or alteration to the Earth's rotation can only be temporary.

## Jumping

One way in which it might be possible to move the Earth using the strength of the entire population would be to place everyone in the same area and have them jump at the same time. This would give the people momentum away from the Earth which would be equal to the momentum of the Earth away from the people,

$$
\begin{equation*}
M_{E} v=N m_{H} u \tag{1}
\end{equation*}
$$

where $v$ is the velocity of the Earth away from its original position, $u$ is the average velocity of each person as they jump, $M_{E}$ is the Earth's mass $\left(5.97 \times 10^{24} \mathrm{~kg}\right.$ [1]), $N$ is the population (6,902,887,287 as of 03/01/2011 [2]) and $m_{H}$ is the average human mass which will be assumed as 70 kg for the purpose of this article.

Assuming that air resistance plays a negligible part, everybody has the same mass and jumps to the same height, the magnitude of $u$ can be considered equivalent to the velocity which an object would reach when falling from a
height $h$ when it accelerates due to gravity, so

$$
\begin{equation*}
u^{2}=2 g h \tag{2}
\end{equation*}
$$

where $h$ is the height at which the average person can jump [3] (assumed to be 0.5 m in this case) and $g=9.8 \mathrm{~ms}^{-2}[1]$.

The Earth can then be assumed to move in a similar manner in the opposite direction so that

$$
\begin{equation*}
v^{2}=2 g s \tag{3}
\end{equation*}
$$

where $s$ is the distance which Earth moves.

By substituting equations (2) and (3) into (1), s can be found as

$$
\begin{equation*}
s=\left(\frac{N m_{H}}{M_{E}}\right)^{2} h \tag{4}
\end{equation*}
$$

which yields a result of $3.28 \times 10^{-27} \mathrm{~m}$.

## Running

Another possible way to move the Earth using human power would be for everyone to run along the equator. This would transfer a small amount of angular momentum from each person to the Earth thus altering the rate of rotation.

Angular momentum is expressed by

$$
\begin{equation*}
L=I \omega \tag{5}
\end{equation*}
$$

where $L$ is the angular momentum [4], $\omega$ is the angular velocity and $I$ is the moment of inertia expressed by

$$
\begin{equation*}
I=\sum m_{i} r_{i}^{2} \tag{6}
\end{equation*}
$$

for a system of $i$ particles [5].

If the reference frame is considered where Earth and the population are stationary, the initial angular momentum $L_{\text {, }}$ would be zero which, as momentum has to be conserved, would be equal to the total momentum when the people start running, $L_{F}$, so

$$
\begin{equation*}
L_{I}=L_{F}=L_{E}+L_{H}=0 \tag{7}
\end{equation*}
$$

where $L_{H}$ is the Human component of angular momentum and $L_{E}$ is Earths component of angular momentum.

Using equations (5), (6), and (7) we find that

$$
\begin{equation*}
\omega_{H} I_{H}=-\omega_{E} I_{E} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{E}=\frac{2}{5} M_{E} R_{E}^{2} \tag{9}
\end{equation*}
$$

if Earth is considered as a uniform sphere [6],

$$
\begin{equation*}
I_{H}=N m_{H} R_{E}^{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{H}=\frac{u}{R_{E}} \tag{11}
\end{equation*}
$$

where $u$, in this case, is the speed at which people run(assumed as $10 \mathrm{~ms}^{-1}$ ), so

$$
\begin{equation*}
\omega_{E}=-\frac{5}{2} \frac{N m_{H} u}{M_{E} R_{E}} \tag{12}
\end{equation*}
$$

where $R_{E}$ is the Earth's radius ( 6371 km [1]). If we now consider the rotating Earth, the new angular velocity would be expressed as

$$
\begin{equation*}
\Omega_{F}=\Omega_{I} \pm\left|\omega_{E}\right| \tag{13}
\end{equation*}
$$

where $\Omega_{\text {, }}$ is the initial angular velocity of Earth(Earth rotates through $2 \pi$ radians in

23 h 56 m [7] $=7.29 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$, equivalent to one sidereal day).
$\Omega_{F}$ has two values which correspond to the direction in which the population run along the equator. If the population ran eastwards along the equator, the Earth's rotation would slow, while the opposite would be true if running westwards.

Substituting values into equation (11) gives the extra angular velocity of Earth as $3.18 \times 10^{-}$ ${ }^{19} \mathrm{rad} \mathrm{s}^{-1}$. This means that there would be one extra or one less rotation of the Earth every $6.29 \times 10^{11}$ years depending on the direction which everybody runs along the equator.

## Conclusion

If the entire human population was to jump on the same spot, or to run in the same direction along the equator, the Earth's motion would be affected by the transfer of momentum. The effect that both of these actions have would be minute in comparison to the scale of the Earth and its rotation rate.

This shows that human strength alone cannot actually move the Earth significantly as a whole due to the large differences in scale and the fact that, in the jumping case, the Earth would return to its original position as soon as everybody lands and in the running case, the Earth would resume its original rotation rate once the population stops running.

## References

[1]http://nssdc.gsfc.nasa.gov/planetary/facts heet/jupiterfact.html(06/04/2011)
[2]http://www.census.gov/ipc/www/popclock world.html (06/02/2011)
[3] P.A.Tipler, G.Mosca, Physics For Scientists and Engineers,(2007), p. 39
[4] as [3] p. 309
[5] as [3] p. 293
[6] as [3] p. 295
[7] Rene R.J.Rohr, Sundials History, Theory and Practice,(1996), p. 24

