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Abstract 
This paper analyses the effects due to special and general relativity on a GPS satellite orbiting at 
an altitude of 3 Mars radii. It was found that in order to keep both the ground station and the 
satellite in synchronisation the clock on the satellite would have to be 1.56 μs per Martian day 
faster than the one on the ground.  

 

 
Introduction 
 
Mankind will eventually colonise other 
planets the first of which is likely to be Mars. 
Once colonies grow it may be necessary to 
navigate the Martian surface. This will 
probably involve the use of a global 
positioning system (GPS) similar to the 
technology that is used to navigate on Earth 
today. In order to give very accurate 
determination of a persons’ position these 
satellites need to have extremely accurate 
clocks. These clocks also need to be in 
synchronisation with ground based clocks. 
The theory of special and general relativity 
suggest that the clocks will be out of sync with 
each other due to the velocity of the satellite 
and the weaker gravitational field of the 
planet respectively. This paper will therefore 
examine the time difference over the course 
of one Martian day due to these effects. 
  
Special Relativity 
 
The special theory of relativity states that the 
time it takes for a clock to tick will increase 
with the velocity of an object, i.e. time will 
slow down in the reference frame of the 
object. The relationship between the proper 
time, and the observed time is given in Eq. 1: 
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where t0 is the proper time, t is the observed 
time, v is the velocity of the satellite and c is 
the speed of light which is equal to 3x108 ms-1 
[1]. The length of a Martian day is 24.6597 hrs 
[2], this is equivalent to 8.88x104 s. Using this 
value for t0, the observed time t can be 
calculated. 
 
The orbital velocity of the satellite can be 
found from the force due to gravity and the 
angular acceleration, Eq. 2, and Eq. 3, [1], 
respectively. 
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where G is the gravitational constant 
(=6.67x10-11 m3kg-1s-2, [1]), M is the mass of 
Mars (=6.42x1023 kg, [2]) and r is the orbital 
radius, from the centre of Mars. At Earth, GPS 
satellites orbit at an altitude of 20200 km [3] 
(~3 Earth radii). Therefore the altitude used 
for a Mars GPS satellite will be estimated at 3 
Mars radii (RM), where the radius of mars is 
3.396x106 m [2]. This therefore gives a value 
of r (in Eq. 4) as 4RM (= 1.36x107). The orbital 
velocity of a Martian GPS satellite is then 
calculated to be 1774 ms-1, using Eq. 4. 
 
The time dilation due to this velocity can be 
calculated by substituting the above values 
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into Eq. 1. The difference between two clocks, 
one on the surface and the other on the GPS 
satellite, can therefore be calculated by 
subtracting the proper time from the 
observed time. This gives a value of 1.55 x 10-6 
seconds. Thus for every Martian day the 
difference between the clocks will be 
increasing by 1.55 μs, due to special relativity. 
 
General Relativity 
 
The general theory of relativity predicts that 
the time it takes a clock to tick will increase 
with gravity, i.e. time will be slower in a 
stronger gravitational field. One solution to 
the Einstein equations of general relativity is 
the Schwarzschild metric, shown below [4], 
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where all the symbols have the same meaning 
as defined in the special relativity section 
above, apart from τ which is now the proper 
time, t is the observed time and dΨ is the 
angular displacement term. In order to 
evaluate the effect due to general relativity, 
only the satellite will be assumed to be at rest 
within the gravitational field of Mars. This 
means that dΨ2 and dr2 are both equal to 
zero. This therefore leaves, 
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Eq. 6 is rearranged to give Eq. 7 below, from 
which the time dilation effect can be 
calculated.  
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The time dilation due to the Martian 
gravitational field can be calculated by 
substituting the values for G, M, c, r, and τ, 
from the special relativity section, into Eq. 6. 
The difference between two clocks, one on 
the surface and the other on the GPS satellite 
can therefore be calculated as 3.11x10-6 

seconds. This therefore means that the 
difference between the ground station and 
the GPS satellite will increase 3.11 μs every 
Martian day. 
 
Discussion 
 
The time dilation effects due to special and 
general relativity counter each other. For a 
moving satellite time goes slower, however, 
for a satellite in a weaker gravitational field 
time goes faster. Therefore the resultant time 
difference between the GPS satellite and the 
ground station is 1.56 μs per Martian day in 
the favour of general relativity. 
 
Conclusion 
 
If mankind were ever to colonise Mars and 
wished to use GPS satellites to aid navigation 
around the planet the clocks on the satellites 
would have to be set to run 1.56 μs faster 
than the ground station per Martian day due 
to the combined effects of Special and 
General relativity. 
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