

A British 1p coin is dropped from a great height. Its terminal velocity is calculated assuming that it falls face-down and as such the area of the penny that impacts upon the skin can be derived using the terminal velocity of the penny on impact,

\[v = u + at \]

\[v = 0 \Rightarrow u = v_t = -at \]

\[\Rightarrow -a = \frac{v_t}{t} \]

where \(t \) is the time it would take the penny to decelerate upon hitting the skin. Using the relationship between deceleration \(a \) and impact force \(F_i \), we can derive an equation to find this force and an equation to find the pressure exerted on impact \(P \) (where \(A_i \) is the area of the penny that impacts upon the skin):

\[F_i = ma \Rightarrow P_i = \frac{ma}{A_i} = \frac{mv_i}{tA_i} \]

Discussion

The above equations assume knowledge of several constants, which are as follows. The mass \(m \), diameter \(2r \) and thickness \(s \) of a British 1p coin are given by [1] as \(m = 3.56 \times 10^{-3} \) kg, \(2r = 2.03 \times 10^{-2} \) m and \(s = 1.52 \times 10^{-3} \) m respectively. The drag coefficient of a thin disc \(C_d = 1.1 \) [2] and the density of air \(\rho_a = 1.29 \) kg m\(^{-3} \) [3].

Using these values for the constants, a terminal velocity is derived from Eq. (3) as \(v_t = 12.3 \) ms\(^{-1} \). This value can be put into Eq. (6) and then Eq. (7) to calculate values for the impact force \(F_i \) and the pressure exerted \(P_i \).

However, the time taken for the penny to decelerate \(t \) must be assumed. Since it is assumed that the impact would be visible on a high-speed camera (which typically record at 1000 fps [4]) and since it is desirable to minimise the time taken to decelerate to provide the highest possible force and pressure exerted on the skin, a value of \(t = 10 \) ms is assumed. The impact area of...
the penny with the skin \(A_i \) is also assumed (in this paper, \(A_i = s^2 = 2.31 \times 10^{-6} \text{ m}^2 \) is used).

In this scenario, it is found that \(F_i = 4.37 \text{ N} \) and \(P_i = 1.89 \text{ MPa} \).

Conclusion

It is known that the average tensile strength of human skin \(P = 20.89 \pm 4.11 \text{ MPa} \) [5]. The calculated value for the pressure exerted on the person upon landing, \(P_i = 1.89 \text{ MPa} \), is much lower than this value. The penny’s impact with its victim would not even break the skin.

REFERENCES

[1] royalmint.com/Corporate/facts/coins/1pCoin.aspx