
An Interesting Family of Groups of Homeomorphisms of

the Real Line

Shivali Raval, Catherine Smith-Dance, Syed Sameed Ahmed
University of Leicester

30th April 2020

Abstract
This paper is meant to serve as an exposition on the 2019 paper [3] by Hyde and Lodha

where they managed to resolve the question posed by Rhemtulla in 1980. The authors in

the paper offer a construction of families of orientation preserving homeomorphisms of the

real line. Each of these families can be viewed as a finitely generated, simple, left-orderable

group. Hence, each of these families satisfies the criteria that Rhemtulla laid out.

In this paper, we primarily intend to offer a simplified construction of a family of groups

G⇢ that the authors have constructed in the first part of their paper. The mathematics

involved with the justification that these groups truly do follow the criteria laid out by

Rhemtulla is not discussed in this exposition. The reader, if interested in these details,

should refer to the original paper. We begin by stating the question that Rhemtulla posed

in 1980 and by explaining what it means.

This is followed by a brief discussion of some preliminary concepts and tools needed

for the rest of the paper. The construction is then laid out. The family of groups thus

constructed contains @0´many groups that satisfy the criteria of Rhemtulla. The authors

of the original paper use this family to construct a much bigger family of such groups

where they are able to find continuum many groups that satisfy the Rhemtulla criteria.

The reader, if interested should again refer to the original paper for this construction. The

construction of G⇢ in this paper is simplified to a great degree for the reader’s ease and

we hope that therefore, it would serve as a good introduction to the original paper. We

conclude this paper with a historical note.

1 Introduction
In 1980 Rhemtulla asked the question “Is there a finitely generated simple left orderable group?”.
The authors in their research, stumbled upon the question “Is there a finitely generated infinite

simple group of homeomorphisms of the real line?” In the original paper, the authors refer to
a paper [2] which proves that the two questions are in fact equivalent.
The original paper is fundamentally about tackling these two questions. The heart of the
original paper comprises of two distinct parts. The authors in the first part of their paper
provide the construction of a family of groups G⇢. This is a family of @0´many groups that
satisfy the Rhemtulla criteria (as laid out in his question). This construction was eventually
used as a stepping stone, in the second part, for generating continuum many groups that satisfy
the Rhemtulla criteria.

MA3517 Mathematics Research Journal Page 1 SR, CSD, SSA, 2020



2 PRELIMINARY CONCEPTS

We have toiled hard to give a very simple, yet rigorous construction of G⇢. The initial discussion
of this construction in the original paper was difficult to understand at our undergraduate level,
therefore considerable simplifications have been made. However, no compromise has been made
as far as the rigour of the method is concerned. We start with PL` pr0, 1sq and Thompson’s
group F . Then, we construct Fr 1

16 ,
15
16s using G. After this we define a quasi-periodic labelling.

All of these pieces then lead to an elegant construction of G⇢. As far as the second construction
of continuum many groups is concerned, it is beyond the scope of this exposition to provide
that construction here. If one reads the two questions posed initially in this introduction and is
unable to understand them, one needs to refer to the next section for a thorough explanation.
A person already familiar with the concepts may directly proceed to the construction in this
exposition.

2 Preliminary Concepts
There are four criteria that need to be satisfied in Rhemtulla’s question. These are that the
object must be a group, and this group must be finitely generated, simple and left-orderable.
We will begin by defining what a group is.

Definition 2.1: A group pG, ˚q is a set G together with a binary operation ˚ on G satisfying
the following axioms

(i) Closure: @ a, b P G, a ˚ b P G

(ii) Associativity: pa ˚ bq ˚ c “ a ˚ pb ˚ cq @ a, b, c P G

(iii) Identity: D e such that e ˚ a “ a “ a ˚ e @ a P G

(iv) Inverse: @ a P G D b P G : a ˚ b “ e “ b ˚ a

In addition to this, we say the generating set of a group is the set of objects from which
the group can be ‘made’. We will also say that the generators are all the elements of the
generating set. This leads on to the following definition of the notion of a finitely generated
group.

Definition 2.2: A group G is said to be finitely generated if it has a finite generating set
M “ ta1, . . . , adu and consists of all products a

✏1
i1 , . . . , a

✏n
in , ik P t1, . . . , du, ✏k “ ˘1, k P N. We

write this as G “ xa1, a2, . . . , ady.

This means that an object that positively answers Rhemtulla’s question must be a group that
is “made” by a finite number of generators. To be able to understand what a simple group is,
we must be familiar with the concepts of a subgroup and a normal subgroup. After this, we
can define a simple group.

Definition 2.3: If H is a subset of a group G and H is also a group, then H is a subgroup

of G, denoted H § G.

Definition 2.4: A subgroup N of the group G is called a normal subgroup if g´1
Ng “ N @ g P

G, and we denote it by N ú G.
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2 PRELIMINARY CONCEPTS

A simple group is a nontrivial group whose only normal subgroups are the trivial group and the
group itself. Recall that the trivial group is the group containing only the identity element,
often denoted as 1, t1u, or t0u.
Finally, we can say what is meant by a left-orderable group. This is the final piece in under-
standing the question posed by Rhemtulla.

Definition 2.5: A left-ordered group is a group G together with a linear order § such that
if a § b, then ca § cb. A group which admits a left-ordering is called left-orderable.

As we have said before, in their paper, the authors provide reference to a paper that proves that
the search for groups that satisfy the Rhemtulla criteria is equivalent to searching for finitely
generated infinite simple group of homeomorphisms of the real line. We wish to provide the
construction of such a family of homeomorphisms of the real line. The following results will be
of great use for the construction later in this paper.

The following theorem is needed for the proof of theorem 2.2.

Theorem 2.1: Let G be a group and H a finite non-empty subset of G. Then H is a subgroup

if and only if a, b P H ñ ab P H.

A large part of this exposition relies on the properties of group homomorphisms and isomorph-
isms. These are defined below.

Definition 2.6: Group homomorphisms are maps between groups which preserve the
“structure”—for groups these are the binary operations. Let pG, ˝q, pH, ˚q be groups. The map
� : G ›Ñ H is called a homomorphism from pG, ˝q to pH, ˚q, if @ a, b P G, �pa˝bq “ �paq˚�pbq.

An example of a group homomorphism to illustrate what is happening is given below.

Example 2.1: The map � : R ›Ñ Rˆ, defined by �pxq “ e
x is a homomorphism from pR,`q

to pR,ˆq, since e
x`y “ e

x
e
y.

Remark: A group homomorphism is said to be a group isomorphism, if it is bijective,
denoted G – H.

We now formally state and prove that “group isomorphisms map a subgroup of the domain to
a subgroup of the codomain”. This result will prove to be critical in constructing the group G⇢.

Theorem 2.2: Let H1 and H2 be subgroups of G1 and G2 respectively. Let � : G1 ›Ñ G2 be a

homomorphism. Then

(i) �pH1q is a subgroup of G2.

(ii) �
´1pH2q “ tg1 : �pg1q P H2u is a subgroup of G1.

Proof. (i) �pH1q is a non-empty subset of G2. Let �paq,�pbq P �pH1q, where a, b, P H1. Then
�paq�pbq´1 “ �paq�pb´1q “ �pab´1q P �pH1q. Therefore, H1 is a subgroup of G2.
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3 CONSTRUCTION

(ii) Since H2 is non-empty, �´1pH2q is a non-empty subset of G1.

a, b P �
´1pH2q ñ �paq,�pbq P H2 ñ �paq�pbq´1 P H2

ñ �paq�pb´1q P H2 ñ �pab´1q P H2 ñ ab
´1 P �

´1pH2q.

Therefore, �´1pH2q is a subgroup of G1.

Later in the construction, we will need the group Fr 1
16 ,

15
16s, which can be found using an iso-

morphism G. To find G, we will need the section formula. The group Fr 1
16 ,

15
16s is needed for the

construction of G⇢.

If a point Y “ px, yq lies on a line segment XZ, between the points X “ px1, y1q and Z “ px2, y2q
and satisfies the ratio XY : Y Z “ m : n, then we say that Y divides XZ internally in the ratio
m : n. The point of division has the coordinates

Y “
ˆ
mx2 ` nx1

m ` n
,
my2 ` ny1

m ` n

˙
. (1)

We hereby direct the reader to any standard text on group theory for a more comprehensive
summary.

3 Construction
Definition 3.1: Homeo

` pra, bsq is the group of all bijective, monotone continuous functions
from and to the interval ra, bs with continuous inverses. The group operation here, is function
composition.

PL` pra, bsq is the set of piecewise linear, monotone increasing functions on ra, bs and hence
PL` pra, bsq is a subgroup of Homeo` pra, bsq.

Definition 3.2: Given a function g P PL`pra, bsq, the open support is the set supppgq – tx P
ra, bs | gpxq ‰ xu. A homeomorphism f : ra, bs ›Ñ ra, bs is said to be compactly supported

in pa, bq if supppfq Ä pa, bq, that is the image of all functions f P PL`pra, bsq lie in the interval
pa, bq.

Therefore, informally one can say that the open support of a homeomorphism is the set of all
elements of the domain whose images are distinct from themselves.

Definition 3.3: Zra, b, 2s is the set of dyadic rationals on an interval ra, bs, i.e. Zra, b, 2s –!
a ` ppb´aq

2q | p P Z, q P N
)
. A dyadic interval is an interval rd1, d2s Ä r0, 1s such that d1, d2 P

Zra, b, 2s, and a dyadic point is a point px, yq whose coordinates x, y P Zra, b, 2s.
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3 CONSTRUCTION

Figure 1: A visualisation of the set of dyadic rationals Zr0, 1, 2s on the interval r0, 1s (Credit:
[5])

If f P PL` pra, bsq, then the points where dfpxq
dx does not exist are called break points, where

Bf “ tset of all break-points of fu.

Definition 3.4: Thompson’s group is represented as Fra,bs on an interval ra, bs, and is defined
as a subgroup of PL` pra, bsq, such that

(i) |Bf | is finite, and each break-point lies in the set of dyadic rationals Bf Ä Zra, b, 2s, and

(ii) for each element f P Fra,bs, dfpxq
dx , when existent, is a power of 2.

We will now begin with the simplest representation of Thompson’s group, Fr0,1s.
Let c0pxq P Fr0,1s such that supppc0q “

`
0, 14

˘
, x P

`
0, 14

˘
ñ c0pxq ° x, and c0pxq |p0, 1

16q“ 2x.
c1pxq – p1`xq ˝ c0pxq ˝ p1´xq. The graphs of c0pxq and c1pxq can be seen in figures 2, 3 below.

c0pxq “

$
’’’&

’’’%

2x, 0 § x † 1
16

x ` 1
16 ,

1
16 § x † 1

8
x
2 ` 1

8 ,
1
8 § x † 1

4

x,
1
4 § x § 1

Figure 2: The graph of c0pxq
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3 CONSTRUCTION

c1pxq “

$
’’’&

’’’%

x, 0 § x † 3
4

x
2 ` 3

8 ,
3
4 § x † 7

8

x ´ 1
16 ,

7
8 § x † 15

16

2x ´ 1, 15
16 § x § 1

Figure 3: The graph of c1pxq

We define a function Apxq – c0pxq ˝ c1pxq. This can be seen in figure 4 below.

Apxq “

$
’’’’’’’’’’’&

’’’’’’’’’’’%

2x, 0 § x † 1
16

x ` 1
16 ,

1
16 § x † 1

8
x
2 ` 1

8 ,
1
8 § x † 1

4

x,
1
4 § x † 3

4
x
2 ` 3

8 ,
3
4 § x † 7

8

x ´ 1
16 ,

7
8 § x † 15

16

2x ´ 1, 15
16 § x § 1

Figure 4: The graph of Apxq
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3 CONSTRUCTION

The generators of Thompson’s Group Fr0,1s are two functions B,C : r0, 1s ›Ñ r0, 1s as follows1

Bpxq “

$
’&

’%

x
2 , 0 § x † 1

2

x ´ 1
4 ,

1
2 § x † 3

4

2x ´ 1, 3
4 § x § 1

, and Cpxq “

$
’’’&

’’’%

x, 0 § x † 1
2

x
2 ` 1

4 ,
1
2 § x † 3

4

x ´ 1
8 ,

3
4 § x † 7

8

2x ´ 1, 7
8 § x § 1

.

Therefore, we can say that Fr0,1s “ xB,Cy.
For the purposes of the construction of G⇢, we need the generators of the group Fr 1

16 ,
15
16s. For

this reason, we need a group isomorphism G : PL` pr0, 1sq ›Ñ PL` `
r 1
16 ,

15
16s

˘
.

We can see that if we were to map PL` pr0, 1sq on to PL` `
r 1
16 ,

15
16s

˘
, a certain sort of horizontal

and vertical shrinking needs to take place because both the domain and image values need to
lie in the interval

“
1
16 ,

15
16

‰
, instead of r0, 1s.

Using intuition, one can come up with the following proportionality relations.
A point x P r0, 1s should map onto a point x

1 P
“

1
16 ,

15
16

‰
such that 0: x : 1 : : 1

16 : x
1 : 15

16 , i.e.
the ratio of the segment connecting 1

16 and x
1 with the segment connecting x

1 and 15
16 is x

1´x .
Therefore, by applying the section formula (1), one can see that x fi›Ñ 1

16 ` 7
8x “ x

1. Similarly,
the point y “ fpxq maps to y

1 “ 1
16 ` 7

8y.
Now, one can guess that the group isomorphism G : PL` pr0, 1sq ›Ñ PL` `

r 1
16 ,

15
16s

˘
will be of

the following form:

Gpfq “
ˆ

1

16
` 7

8
x

˙
˝ fpxq ˝ inv

ˆ
1

16
` 7

8
x

˙

ñ Gpfq “
ˆ

1

16
` 7

8
x

˙
˝ fpxq ˝ 8

7

ˆ
x

1 ´ 1

16

˙
— f

1px1q, and x fi›Ñ 1

16
` 7

8
x “ x

1
.

The proof of the isomorphicity of G is left to the reader as an exercise2. One can guess that the
images of B and C under G would produce generators of Fr 1

16 ,
15
16 s. But, in order for this to be

true, we first need to justify that all functions in the set Fr0,1s actually do map onto functions
in the set Fr 1

16 ,
15
16 s, and vice versa. What follows is a proof that justifies this claim.

Proof. We use the word dyadicity to mean the dyadic nature of the breakpoints of a function
f P Fr0,1s or f

1 P Fr 1
16 ,

15
16 s.

We know that Fr0,1s is a subgroup of PL` pr0, 1sq. We also know from theorem 2.2 that group
isomorphisms map a subgroup of a domain to a subgroup of the codomain. Therefore, G will
map Fr0,1s on a subgroup of PL` `

r 1
16 ,

15
16s

˘
, that will be isomorphic to Fr0,1s.

Now, we show that the image ImpFr0,1sq Ñ Fr 1
16 ,

15
16s under G by showing the invariance of slope

(of line segments between two break points) and dyadicity of break points under G.
1
As in [1], example 1.1, and corollary 2.6

2
Hint: see how the functions composed on the left- and right-hand side of fpxq in the definition of G are

both linear, and hence f which is piecewise linear will map onto f 1
which will also be piecewise linear.
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3 CONSTRUCTION

Let fpxq P Fr0,1s such that fpxq “ mx ` c for x values in between two break points.

Gpfpxqq “
ˆ

1

16
` 7

8
x

˙
˝ pmx ` cq ˝ 8

7

ˆ
x

1 ´ 1

16

˙

“ 1

16
` 7

8

ˆ
8

7
mpx1 ´ 1

16q ` c

˙

“ mx
1 `

ˆ
1

16
´ 1

16
m ` c

˙

Evidently, the slope is invariant. If x is a dyadic point on the interval r0, 1s, then x is of the form
p
2q . Thus, under G, x would map on to the point x1 “ 1

16 ` 7
8x “ 1

16 ` 7
8 ¨ p

2q ñ x
1 P Z

“
1
16 ,

15
16 , 2

‰
.

Therefore, under G, dyadicity is also preserved.
Now, we must show that ImpFr 1

16 ,
15
16sq Ñ Fr0,1s under G´1. To do this, we must find the inverse

of G, denoted G´1pf 1q and conclude that for any f
1 P Fr 1

16 ,
15
16s such that f

1px1q “ nx
1 ` d

between two break points on the interval
“

1
16 ,

15
16

‰
, when acted on by G´1, slope and dyadicity

are preserved.
One can see that:

invpGpfqq “ inv

ˆ
1

16
` 7

8
x

˙
˝ f

1px1q ˝
ˆ

1

16
` 7

8
x

˙

ñ G´1pf 1q “ 8

7

ˆ
x

1 ´ 1

16

˙
˝ f

1px1q ˝
ˆ

1

16
` 7

8
x

˙
— fpxq, and x

1 fi›Ñ 8

7

ˆ
x

1 ´ 1

16

˙
“ x.

Now, we need to show that slope is preserved. Consider the element f
1 P Fr 1

16 ,
15
16s such that

f
1px1q “ nx

1 ` d between two break points.

G´1pf 1q “ 8

7

ˆ
x

1 ´ 1

16

˙
˝ pnx1 ` dq ˝

ˆ
1

16
` 7

8
x

˙

“ 8

7

ˆ
n

16
` 7n

8
x ` d ´ 1

16

˙

“ nx `
ˆ

n

14
` 8

7
d ´ 1

14

˙

It is therefore evident that the slope is invariant.
If x

1 is a dyadic point on the interval
“

1
16 ,

15
16

‰
, then x

1 is of the form 1
16 ` 7p

2q . Thus, under
G´1, x1 would map on to the point x “ 8

7

`
x

1 ´ 1
16

˘
“ 8

7

`
1
16 ` 7p

2q ´ 1
16

˘
“

`
8p
2q

˘
ñ x P Z r0, 1, 2s.

Therefore, under G´1, dyadicity is also preserved.
Now, we know that Thompson’s group on any interval is isomorphic to one on any other interval.
Hence, the group isomorphism G, is also a group isomorphism between Fr0,1s and Fr 1

16 ,
15
16s.

Therefore we have successfully justified that the set Fr0,1s actually does map onto the set Fr 1
16 ,

15
16s

under G, which means that, GpBq and GpCq are generators of Fr 1
16 ,

15
16s.

Now, we can use G to find an expression for ⌫1 “ GpApxqq, by mapping Apxq fi›Ñ ⌫1.
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3 CONSTRUCTION

⌫1 “

$
’’’’’’’’’’’&

’’’’’’’’’’’%

2x ´ 1
16 ,

1
16 § x † 15

128

x ` 7
128 ,

15
128 § x † 11

64
x
2 ` 9

64 ,
11
64 § x † 9

32

x,
9
32 § x † 23

32
x
2 ` 23

64 ,
23
32 § x † 53

64

x ´ 1
16 ,

53
64 § x † 113

128

2x ´ 15
16 ,

113
128 § x § 15

16

Figure 5: The graph of Apxq fi›Ñ ⌫1

We can also now map the generators of Fr0,1s to the generators of Fr 1
16 ,

15
16s, i.e. Bpxq fi›Ñ ⌫2 and

Cpxq fi›Ñ ⌫3 such that

x⌫2, ⌫3y “ Fr 1
16 ,

15
16s, and suppp⌫2q, suppp⌫3q Ä

`
1
16 ,

15
16

˘
.

The resulting expressions are as follows. The figures 6, 7 show Bpxq fi›Ñ ⌫2 and Cpxq fi›Ñ ⌫3

visually.

⌫2 “

$
’&

’%

x
2 ` 1

32 ,
1
16 § x † 1

2

x ´ 7
32 ,

1
2 § x † 23

32

2x ´ 15
16 ,

23
32 § x § 15

16

Figure 6: The graph of Bpxq fi›Ñ ⌫2
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3 CONSTRUCTION

⌫3 “

$
’’’&

’’’%

x,
1
16 § x † 1

2
x
2 ` 1

4 ,
1
2 § x † 23

32

x ´ 7
64 ,

23
32 § x † 53

64

2x ´ 15
16 ,

53
64 § x § 15

16

Figure 7: The graph of Cpxq fi›Ñ ⌫3

Therefore we know that Fr 1
16 ,

15
16s “ x⌫2, ⌫3y.

We now define the functions Vi, (i “ 1, 2, 3), which are extensions of ⌫i on the interval r0, 1s,
such that the open support remains invariant. The graphs of Vi can be seen in figures 8, 9,
and 10, respectively.

V1 “

$
’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’%

x, 0 § x † 1
16

2x ´ 1
16 ,

1
16 § x † 15

128

x ` 7
128 ,

15
128 § x † 11

64
x
2 ` 9

64 ,
11
64 § x † 9

32

x,
9
32 § x † 23

32
x
2 ` 23

64 ,
23
32 § x † 53

64

x ´ 1
16 ,

53
64 § x † 113

128

2x ´ 15
16 ,

113
128 § x † 15

16

x,
15
16 § x § 1

Figure 8: The graph of V1pxq
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V2 “

$
’’’’’’&

’’’’’’%

x, 0 § x † 1
16

x
2 ` 1

32 ,
1
16 § x † 1

2

x ´ 7
32 ,

1
2 § x † 23

32

2x ´ 15
16 ,

23
32 § x † 15

16

x,
15
16 § x § 1

Figure 9: The graph of V2pxq

V3 “

$
’’’’’’&

’’’’’’%

x, 0 § x † 1
2

x
2 ` 1

4 ,
1
2 § x † 23

32

x ´ 7
64 ,

23
32 § x † 53

64

2x ´ 15
16 ,

53
64 § x † 15

16

x,
15
16 § x § 1

Figure 10: The graph of V3pxq
The following definitions of words and blocks are needed for the definition of the final object
that is needed for the construction of G⇢ namely ‘quasi-periodic labelling’.

Definition 3.5: A labelling is a map ⇢ : 1
2Z ›Ñ ta, a´1

, b, b
´1u such that

(i) ⇢pkq P ta, a´1u, k P Z, and

(ii) ⇢pkq P tb, b´1u, k P 1
2ZzZ.

A block refers to a set of the form tk, k ` 1
2 , . . . , k ` n

2 u. The set of all blocks is denoted
B – ttk, k ` 1

2 , . . . , k ` n
2 u; n P N, k P Zu, and a word is a string of symbols defined as

W⇢pXq “ ⇢pkq⇢pk ` 1q . . . ⇢pk ` n
2 q, where X P B is a block.
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3 CONSTRUCTION

Definition 3.6: A labelling is said to be quasi-periodic if, along with the two conditions
from definition 3.5 above, the following two conditions are satisfied:

(i) @X P B, Dn P N such that @Y P B and |Y | ñ W⇢pXq is a subword of W⇢pY q i.e. words
corresponding to a block are going to repeat if the block considered gets large enough.

(ii) @X, DY P B such that W⇢pY q “ W
´1
⇢ pXq i.e. there will always exist blocks whose

corresponding words are inverses of words corresponding to a given block.

Now, we are faced with the conundrum of constructing such a labelling. The answer to this
lies in Lemma 3.1 of [3], wherein the authors give a method of constructing them. It can also
be ascertained that there exist @0´many such labellings.
Now, we can begin the construction of G⇢. First, we define the homeomorphisms

⇣i,�i : R ›Ñ R, i P t1, 2, 3u.
We will construct these homeomorphisms by defining these functions on intervals of the form
rn, n ` 1s. On each of such intervals, the functions would either look like Vi, or would look
like the function we get after orientation reversal of Vi. Which one of these functions it would
resemble on the interval rn, n ` 1s depends on the value of quasi-periodic labelling at the mid-
point of the interval, or at the beginning point, i.e. ⇢pn`1{2q (in the case of ⇣), or ⇢pnq (in the
case of �). Thus, informally speaking, we are gluing the functions Vi and their versions with
reversed orientations to make the whole functions ⇣i and �i.
Now, the question arises what exactly do we mean by orientation reversal of a function? One
can convince oneself that if we have a function f from and on an interval ra, bs, then the function
ppb` aq ´xq ˝ f ˝ ppb` aq ´xq would be what we get if the function f were reflected, first along
the line x “ pb`aq

2 and then reflected in the line y “ pb`aq
2 . Two sequential reflections of this

sort are what we mean by orientation reversal.
In order for us to be able to glue functions with each other we need a way to formalise the act
of translation of functions. To formalise the act of gluing functions Vi (or their versions with
orientations reversed) on different intervals than their actual domains and codomains, we have
to translate these functions both horizontally and vertically in the Cartesian plane. In formal
notation, this process would be written as the composition px ` nq ˝ Vi ˝ px ´ nq. This is a
translation of the functions Vi (or their versions with reversed orientation). It is easy to see
that both the domain and codomain change from r0, 1s to rn, n ` 1s. Now, we believe it would
be easy for the reader to understand the following definitions.

⇣i |rn,n`1s “
#

px ` nq ˝ Vi ˝ px ´ nq, ⇢
`
n ` 1

2

˘
“ b

px ` nq ˝
`
15
16 ` x

˘
˝ Vi ˝

`
15
16 ´ x

˘
˝ px ´ nq, ⇢

`
n ` 1

2

˘
“ b

´1

⇣i |rn,n`1s “
#

px ` nq ˝ Vi ˝ px ´ nq, ⇢
`
n ` 1

2

˘
“ b`

15
16 ` x ` n

˘
˝ Vi ˝

`
15
16 ´ x ` n

˘
, ⇢

`
n ` 1

2

˘
“ b

´1

�i |rn,n`1s “
#

px ` nq ˝ Vi ˝ px ´ nq, ⇢ pnq “ a

px ` nq ˝
`
15
16 ` x

˘
˝ Vi ˝

`
15
16 ´ x

˘
˝ px ´ nq, ⇢ pnq “ a

´1
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4 FINAL COMMENTS AND HISTORICAL NOTE

�i |rn,n`1s “
#

px ` nq ˝ Vi ˝ px ´ nq, ⇢ pnq “ a`
15
16 ` x ` n

˘
˝ Vi ˝

`
15
16 ´ x ` n

˘
, ⇢ pnq “ a

´1

where n P Z for all the above expressions. These homeomorphisms that we have just defined
form the generators of G⇢. Therefore, we have successfully constructed the group G⇢.

G⇢ – x⇣1, ⇣2, ⇣3,�1,�2,�3y

The fact that there exist @0´many quasi-periodic labellings and hence @0´many G⇢ was dis-
cussed in Lemma 3.1 in the original paper [3]. And because of the equivalence of the two
questions in our introduction, we know that G⇢ satisfies the Rhemtulla criteria. Hence we are
successful in providing a construction of @0´many groups of homeomorphisms of the real line
that satisfy the Rhemtulla criteria.

4 Final comments and historical note
As said earlier in the paper, the authors were able to find continuum many groups that satisfy
the Rhemtulla criteria. However, it is beyond the scope of this exposition to provide those
constructions here. The interested reader should refer to the the original paper for further
details. It is needless to say that the area of mathematics that the original paper is concerned
with is a very interesting and relevant one. The following account gives a brief historical note
on this field of research.

The group F was first defined by Richard J. Thompson in the 1960s. It was later rediscovered by
topologists Freyd and Heller, and independently by Dydak, who were researching the structure
of topological spaces. Since then, F has become an important object of study in geometric
group theory.

The study of orderings of groups has a long history, dating back to the nineteenth century.
Throughout the twentieth century many notable developments were made, with significant
developments after the 1960s, following much research into linearly ordered groups. As a result,
in the late 1970s to early 1980s, several detailed books and articles were written on the theory
of orderable groups—most notably Kokorin and Kopytov’s book, “Fully ordered groups”, and
Mura and Rhemtulla’s book, “Orderable groups”.

One consequence of the Rhemtulla criteria is that it has opened new directions of research
in low dimensional topology and dynamical systems. In the past few decades a phenomenal
relationship between topology and the theory of orderable groups has been discovered. Many
groups of topological interest are now known to be left orderable, with examples including:
torsion free abelian groups, braid groups, knot groups, fundamental groups of almost all surfaces
and many manifolds in higher dimensions!
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