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Abstract: This paper serves as an exposition on the theorem proved by Michael Krivelevich 
which states that the critical bias for the Hamiltonicity game between a Maker and Breaker 

can be generalised as 
(1+𝑜(1))𝑛

ln 𝑛
 [1]. Initially, basic introductions into some concepts used in 

Combinatorial Game Theory and Graph Theory are given. These are then built upon to 
create lemmas and theorems. Using these tools, the result is proved in multiple stages. 
 
 

 

1. Introduction 
Popular two-person strategy games such as Tic-Tac-Toe (Noughts and Crosses) and Hex can 
be generalised as having a position where the players take turns making moves to achieve a 
defined winning condition.  
 
This gives way to the notion of the positional game used in Combinatorial Game Theory 
(CGT) which can be described by the following conditions: 

• 𝑋 - the board, with a finite set of elements known as positions 
• ℱ - the winning-sets, which are a family of subsets of 𝑋 
• A criterion for winning the game 

 
Definition 1. A maker-breaker game is a type of positional game where two players, the 
Maker and the Breaker take it in turns to take unclaimed elements on a board. The objective 
of the Maker is to hold all the elements of a winning set, whereas the Breaker wins if they 
can prevent this (i.e. hold at least one element in each winning set).  
 
Alternatively, the Maker-Breaker game can be more formally defined as: a triple (𝐻, 𝑎, 𝑏), 
with  𝐻 =  (𝑋, ℱ) where 𝐻 is a hypergraph.  
 
Definition 2. A hypergraph is a graph which is made of a set of vertices (𝑋), the board of the 
game, and the set of edges (𝐹) which join the vertices to make a winning set.  
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The parameters 𝑎 and 𝑏 are positive integers which represent the number of elements the 
Maker and Breaker can claim in each turn, respectively. They also represent the game bias.  
 

 

2. Examples of Maker Breaker Games 
Traditional tic-tac-toe is a strong positional game (the winner is the first player to hold all 
the elements of the winning set) where the second player has no chance of winning the 
game when playing against the perfect tic-tac-toe player. The best result for player 2 is a 
draw whereas player 1 can win or draw every single time. In the traditional game, both 
players attempt to make winning sets while also trying to prevent their opponent from 
making a winning set. If the game changes so that one player tries to win while the other 
attempts to prevent this, then the traditional game becomes a Maker-Breaker game [3].  
 
Maker-breaker tic-tac-toe consists of two players and is played on a 3x3 grid, (the board). 
The aim of the maker is to pick every element of a winning set and Breaker’s aim is to claim 
at least one element from every winning set to prevent the Maker from winning. The aim 
for the Maker is to pick three squares in a row and the Breaker’s aim is to prevent them. The 
maker plays a winning strategy whereas the breaker plays a drawing strategy. Maker loses 
the game if Breaker can draw the game. In this game Maker has a winning strategy (i.e. they 
can hold all the elements of a winning set) because Maker does not need to block Breaker 
from obtaining a winning set. A deeper explanation of tic-tac-toe theory is explained in [4]. 
 
Hex is an example of a maker-breaker game, played between two players on a hexagonal 
grid. The aim is for the maker to create an unbroken chain from one side of their board - 
marked by their colours - to the opposite side. This is done by the players taking alternating 
turns to place a counter on unoccupied spaces on the board. What makes it a maker-
breaker game is that there can be no draws, either Breaker creates an unbroken chain from 
one side to another, which will prevent Maker from creating an unbroken chain from their 
side to other, or Maker successfully creates the unbroken chain and they win [5]. 
 
The bias of Positional and Maker-Breaker games is, in simple terms, the number of elements 
placed by each player every turn. Where in the standard positional game each player would 
pick one element per turn, a biased game would result in a different number of elements 
being taken by the players on each turn. 
 

Figure 1: An example of a hypergraph 
with vertices 𝑣1, . . . , 𝑣7, 𝑒1, . . . , 𝑒4 and 4 

edges represented by colours [2] 
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Maker-breaker games are bias-monotone. Therefore, if Maker can win a game (𝐻, 1, 𝑏), 
then Maker is also able to win a game (𝐻, 1, 𝑏’) where (𝑏’ <  𝑏). This is because in (𝐻, 𝑎, 𝑏), 
𝑎 is the number of moves Maker can make each turn and 𝑏 is the number of moves Breaker 
can make each turn. For example, If Maker can win the game (𝐻, 1, 3), then Maker with one 
move per turn can win while Breaker makes three moves per turn. It follows that if Breaker 
has less than 3 moves each turn then Maker would still win. If Breaker’s moves are reduced, 
then it is easy to see that Maker will also win. Therefore, the critical bias of the game can be 
defined as 𝑏∗, which is called the “break point”. So for any game, (𝐻, 𝑎, 𝑏∗), Maker wins for 
any 𝑏 <  𝑏∗ and loses otherwise. A (𝐻, 1, 1) game has no critical bias and there is no bias for 
small values of n in the Hamiltonicity game. 
 
Definition 3. A Hamilton cycle is a graph cycle (i.e. a closed loop) through a graph that visits 
each vertex exactly once. 
 

 
Figure 2: An example of a Hamilton cycle [6]  

 
The Hamiltonicity game would be where the Maker wins if their graph contains a Hamilton 
Cycle in the end.  
 
This paper looks at the Hamiltonicity game played on the edge set of a complete graph 𝐾𝑛. 
 
Definition 4. A complete graph is a graph in which every pair of vertices is connected by a 
unique edge. So, a complete graph 𝐾𝑛 has n vertices and 𝑛(𝑛 − 1)/2 edges and is only made 
of the vertices that are in the graph.  
 

3. Previous Research 
The bias in maker-breaker games was first discussed in Chvatal and Erdos in 1978 [7]. They 
found that Maker wins the unbiased Hamiltonicity game for sufficiently large n. They also 
showed that Maker wins within 2n rounds. Chvatal and Erodos also proved that for 𝑏(𝑛) ≥
 (1+𝜖)𝑛

ln 𝑛
, where 𝜖 >  0 is an arbitrary small constant. Breaker can isolate a vertex in the 1: 𝑏 

game played on 𝐾𝑛 . Later, Hefetz et al. [8] found that the minimum number of steps 
required for Maker to win this game was 𝑛 + 2 and finally, the optimal 𝑛 + 1 was proven by 
Hefetz and Stich [9].  
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Ballobas and Papaioannou [10] verified a conjecture by Chvatal and Erdos that there is a 
function 𝑏(𝑛) tending to infinity such that Maker can still produce a Hamilton cycle if they 

play against the bias 𝑏(𝑛). They proved that even if Breaker’s bias is as large as 
𝑐 ln 𝑛

ln ln 𝑛
, Maker 

is able to construct a Hamilton cycle for some constant 𝑐 >  0. Maker wins the 

Hamiltonicity game provided Breaker’s bias is at most (
ln 2 

27
− 𝑜(1))

𝑛

ln 𝑛
 proved by Beck [11]. 

Beck’s result established that the 
𝑛

log 𝑛
 is the order of magnitude of the critical bias in the 

Hamiltonicity game in view of the Chvatal-Erdos theorem about isolating a vertex. 
Krivelevich and Szabo [12] improved on Beck’s findings and showed that the 𝑏(𝑛), the 

critical bias, for the Hamiltonicity game is at least 
(ln 2−𝑜(1))𝑛

ln 𝑛
. 

 
This paper relies on Gebauer and Szabo’s [13] findings that the critical bias for the 

connectivity game on 𝐾𝑛 is asymptotically equal to 
𝑛 

ln 𝑛
, where Maker wins if and only if they 

create a spanning tree from their edges by the end of the game. It is widely believed that 

the critical bias for the Hamiltonicity game on 𝐾𝑛 is asymptotically equal to 
𝑛

ln 𝑛
 as well. This 

conjecture is described as one of the most “humiliating open problems” of the subject by 
Beck [4].  
 
 

4. The Result 
Theorem 1. Maker has a strategy to win the (1: 𝑏) Hamiltonicity game played on the edge 
set of the complete graph 𝐾𝑛 on 𝑛 vertices in at most 14𝑛 moves, for every 𝑏 ≤

(1 −
30

𝑙𝑛
1
4 𝑛

)
𝑛

𝑙𝑛 𝑛
, for all large enough 𝑛.  

 
The error term expression and constants are not optimal because there is no benefit in 
pursuing an improved implementation of the argument. The constants and error term 
expression are there to ensure that the conjecture is resolved for large enough 𝑛. 
 
 

Notation 
For a graph 𝐺 =  (𝑉, 𝐸): 

𝐺 - is a Graph  
𝑉 - are all possible hypergraphs in G  
𝐸 - are the winning sets in the graph G 

 
Let 𝑈 be a subset of 𝑉: 

𝑁𝐺(𝑈) - is the external neighbourhood of the subset U in graph G (i.e. the vertices 
outside of U that can connect to its boundary points and are still in G) 
 For a graph 𝐺 =  (𝑉, 𝐸) where V is the vertex set in G, let 𝑈 ⊂ 𝑉, so 𝑁𝐺(𝑈)  =
 { 𝑣 𝜖 𝑉\𝑈: 𝑣 has a neighbour in 𝑈}.  
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For a graph 𝐺 =  (𝑉, 𝐸) and a vertex subset 𝑈 ⊂  𝑉, we denoted the external 
neighbourhood of U in G by 𝑁𝐺(𝑈). For the rest of the paper it is assumed that the 
underlying parameter n is large enough where necessary.  
 

Let  

𝛿0  =  𝛿0(𝑛)  =
 6

ln
1
2 𝑛

, 

𝛿 =  𝛿(𝑛) =  
15

ln
1
4 𝑛

, 

𝜖 =  𝜖(𝑛)  =
30

ln
1
4 𝑛

, 

𝑘0  =  𝑘0( 𝑛) =  𝛿0𝑛 =  
6

ln
1
2 𝑛

. 

 
𝐺 =  (𝑉, 𝐸) is a k-expander, for a positive integer k, if |𝑁𝐺(𝑈)| ≥  2|𝑈| for every subset 
𝑈 ⊂ 𝑉 of at most k vertices.  
 

Aside: Order notation (‘big-O’ and ‘little-o’) 
 
Order notation is used to describe relationships between two functions or sequences 
which tend towards zero or infinity. For example, the notation can be used to state 
precisely that one function goes to zero (or infinity) faster than the other.  
 
Big-O notation: This can be used to describe how quickly a function tends to infinity. 
 
A definition of the big-O notation proceeds as follows: If 𝑓(𝑥) and 𝑔(𝑥) are two functions 
which tend to zero as 𝑥 → 0, we say that 𝑓(𝑥) = 𝑂(𝑔(𝑥)) (“f(x) is of order of g(x) as 𝑥 →
0”), if |𝑓(𝑥)| ≤ 𝐾|𝑔(𝑥)| for all |𝑥| sufficiently small where K is some positive constant.  
 

For example:  
2𝑥2  𝑐𝑜𝑠 𝑥 +  𝑥3 𝑠𝑖𝑛 𝑥 =  𝑂(𝑥2)  

While 2𝑥2 𝑠𝑖𝑛 𝑥 + 𝑥3 𝑐𝑜𝑠 𝑥 =  𝑂(𝑥3) as 𝑥 →  0𝑥 →  0 

This is because 𝑐𝑜𝑠 𝑥 = 1 − (𝑥2)/2 + 𝑂(𝑥4) and 𝑠𝑖𝑛 𝑥 = 𝑥 − (𝑥3)/6 + 𝑂(𝑥5) 
 
Little-o notation: This is used in order to state that one function tends to zero faster than 
the other. 
 

For example: 

𝑒𝑥  = 1 + 𝑥 +
𝑥2

2
+  𝑜(𝑥2)  

 
This means that the terms denoted as 𝑜(𝑥2) converge to zero faster than 𝑥2  as 
𝑥 → 0 
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For a graph 𝐺 we define 𝑒 (a non-edge) as a booster, where 𝑒 =  (𝑢, 𝑣) of 𝐺, if adding 𝑒 to 
𝐺 creates a graph 𝐺’ which is Hamiltonian or has a maximum path longer than that 
of 𝐺. Boosters are added to advance a graph towards Hamiltonicity so continuously adding 
𝑛 boosters in a sequence clearly brings a graph to Hamiltonicity. 
 
 

5. Tools 
Work done by Pósa [14] was built upon to achieve the following lemma, which is used 
frequently in papers about Hamiltonicity and on extremal problems involving paths and 
cycles. 
 

Lemma 1. Let G be a connected non-Hamiltonian k-expander. Then at least 
(𝑘+1)2

2
 non-edges 

of G are boosters.  
 
Proof. Lemma 8.5 of [15] or Corollary 2.10 in [16] 

 
The next lemma shows that connected k-expander and their components are guaranteed to 
be relatively large size, (although k-expanders are not necessarily connected)  
 
 
Lemma 2. Let 𝐺 =  (𝑉, 𝐸) be a k-expander. Then every connected component of 𝐺 has size 
at least 3𝑘.  
 
Proof (By contradiction). Let 𝐺 =  (𝑉, 𝐸) be a k-expander and let 𝑉0 be the vertex set of a 
connected component of 𝐺 which has a size less than 3𝑘. Now, we select an arbitrary subset 

𝑈 ⊆ 𝑉0 with cardinality of |𝑈| = min {|𝑉0|, 𝑘}. So, the cardinality of |𝑈| >
|𝑉0|

3
. From the 

definition of a k-expander, it follows that |𝑁𝐺(𝑈)|≥ 2|𝑈|. We know 𝑁𝐺(𝑈) ⊆ 𝑉0, which 
implies 

 
|𝑉0| ≥ |𝑈| + |𝑁𝐺(𝑈)| ≥ 3|𝑈| 

 
However, this is a contradiction, so we have proved the lemma. 
 
 
Example 1: To supplement the proof, an example of an k-expander where 𝑘 =  2 will be 
used. (Note: the graph is solely to help visualisation of the proof and cannot be used as a 
proof itself) 
 
 
 
 
 
As 3𝑘 = 6, let |𝑉0| = 4 
 
 

= 𝑉0 

Figure 3 : A K-expander where 
K=2 with vertex set of 

connected components  𝑉0 
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The arbitrary subset U will be of size 2, so we can see the cardinality of |𝑈| >
|𝑉0|

3
 

 
|𝑈| = min{|𝑉0|, 𝑘}

|𝑈| = min {4,2}
|𝑈| = 2

  

 
 
 
 
By definition,  

𝑁𝐺(𝑈) ≥ 2|𝑈|
4 ≥ 2|2|

 

And we know  
𝑁𝐺(𝑈) ⊆ 𝑉0 

Which implies 
|𝑉0| ≥ |𝑈| + |𝑁𝐺(𝑈)| ≥ 3|𝑈|

4 ≥ 2 + 4 ≥ 6
 

However, this is a contradiction. 
 
 
Using these lemmas, the main tool of the proof can be described. This is done by applying a 
recent analysis of the biased minimum game by Gebauer and Szabó [13] to the game where 
Maker’s goal is to reach a graph of minimum degree of at least 12.  
 
Definition 5. The degree of a vertex is the number of edges that connect to it. 
 
So, the minimum degree of the graph, 𝛿(𝐺), would be minimum degree of its vertices.  
 
Maker’s strategy, employed by Gebauer and Szabó, is as follows:  
 
Maker and Breaker play a 1 ∶  𝑏 game on the edges of the complete graph 𝐾𝑛 on 𝑛 vertices. 
For a current position of the game (with some edges of 𝐾𝑛 being claimed by Maker and 
some others by Breaker), the degrees of vertex 𝑣 in Maker’s and Breaker’s graph are 
denoted by 𝑑𝑒𝑔𝑀(𝑣) and 𝑑𝑒𝑔𝐵(𝑣) respectively.  

 
Let us define a component as a connected section of Maker’s graph. The component 
containing a vertex 𝑣 can be represented by 𝐶(𝑣). This component is said to be dangerous if 
it contains at most 2𝑏 vertices. The danger function, 𝑑𝑎𝑛𝑔(𝑣), of a vertex 𝑣 with respect to 
the current position of the game is defined as 𝑑𝑎𝑛𝑔(𝑣) ≔ 𝑑𝑒𝑔𝐵(𝑣) − 2𝑏 ∙ 𝑑𝑒𝑔𝑀(𝑣). 

 
=> 2 > 4/3 

Strategy S: As long as there is a vertex of degree less than 12 in Maker’s graph, Maker 

chooses a vertex v of degree less than 12 in his graph with the largest danger value 

𝑑𝑎𝑛𝑔(𝑣) (breaking ties arbitrarily) and claims an arbitrary unclaimed edge 𝑒 containing 

𝑣. 

= 𝑈 

Figure 4: 2-expander with 
subset U of 𝑉0 
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If Maker claims an edge 𝑒 due to a vertex 𝑣 in the strategy above, it can be said that 𝑒 is 
chosen by 𝑣. This gives way to the following theorem:  
 
Theorem 2. ([13], Theorem 1.2) In a (1: (1 − 𝑒𝑝𝑠)𝑛/ ln 𝑛) - game played on the edge set of 
the complete graph 𝐾𝑛, on 𝑛 vertices, strategy S guarantees Maker minimum degree of at 
least 12 in his graph.  
 
It is critical that Maker can reach degree at least 12 at 𝑣, for every vertex in the graph, when 
the substantial part of the edge at 𝑣 is still unclaimed, (as stated in the following lemma).  
 
Lemma 3. In a (1: (1 − 𝑒𝑝𝑠)𝑛/ ln 𝑛) - game played on the edge set of the complete graph 
𝐾𝑛, on 𝑛 vertices, strategy S guarantees that for every vertex 𝑣 ∈ [n] Maker has at least 12 
edges incident to 𝑣 before Breaker accumulates at least (1 − 𝑑𝑒𝑙𝑡𝑎)𝑛 edges at 𝑣.  
 
Proof. To prove this Lemma, a modification of the proof of Theorem 1.2 of [13] is used. This 
theorem is: 

 

Let 𝑐 = 𝑐(𝑛) <
𝑙𝑛 𝑙𝑛 𝑛

3
. Maker has a strategy to build a graph with minimum degree at least 𝑐 

while playing against Breaker with bias 𝑏 ∶= (𝑙𝑛 𝑛 − 𝑙𝑛 𝑛 − (2𝑐 + 3))
𝑛

𝑙𝑛2𝑛
, provided 𝑛 is 

large enough. 
 
The proof of the above (discussed in [13]) analyses a game that ends when either all vertices 
have degree at least 𝑐 in Maker’s graph (i.e. Maker wins) or one vertex has degree at least 
𝑛 − 𝑐 in Breaker’s graph (i.e. Breaker wins). This argument can be used for a slightly 
different game in which Breaker wins if they accumulate at least (1 − 𝛿)𝑛 edges at a vertex 
whose Maker degree is still less than 12. Then, the danger of the last vertex 𝑣𝑔 before 

Break’s final move can be found to be at least (1 − 𝛿)𝑛 − 12 − 𝑏. Finally, one can check 
that the danger of the original set 𝐼𝑔−1 before the game started is positive. 

 

 

6. The Proof 
Proving Theorem 1 is done in three stages. The first stage is where Maker creates a 𝑘0-
expander in a linear number of moves. The second stage is where Maker ensures that the 
graph is connected in at most 𝑂(𝑛 𝑘0⁄ ) moves. Finally, the graph is turned into a 
Hamiltonian one, using at most n further moves.  
 
Stage 1: Creating an expander  
Strategy S (Gebauer-Szabo’s winning strategy) for the minimum degree 12 game guarantees 
a minimum degree of 12 or more in Maker’s graph. In addition to this, it ensures that the 
game is flexible enough so that Maker can pursue the goal of creating a good expander from 
its edges quickly.  
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Maker increases the degree of a vertex whose current degree in the graph is still less than 
12 by one if the game is played at this stage. Therefore, Maker will win the game in at most 
12𝑛 moves. At each round Maker is allowed to choose an edge 𝑒 incident to its vertex of 
minimum degree 𝑣 arbitrarily. Maker’s freedom of choice can be specified as Maker claims a 
random edge 𝑒 incident to 𝑣 each time. This random choice allows us to prove that Maker 
has a strategy to create a good expander quickly.  
 
Lemma 4. Maker has a strategy to create a 𝑘0-expander in at most 12𝑛 moves.  
 
 
Proof. Maker augments Strategy S by choosing a random edge incident to a vertex at each 
round. This new augmented strategy can be called Strategy S’. 

 

  
We are considering a game where Maker and Breaker are playing random strategies with no 
chance moves. This is enough to prove that Maker’s strategy in creating 𝑘-expanders with 
positive probability succeeds. Therefore, the game continues until the minimum degree in 
Maker’s graph is at least 12. We also know from Lemma 4 that the duration of the game 
does not exceed 12𝑛. As a result, we can prove that Maker’s strategy succeeds with 
probability approaching 1.  
 
Suppose Maker’s graph, 𝑀, is not a 𝑘-expander. Then there is a subset 𝐴 of size |𝐴| =  𝑖 ≤
 𝑘0 in graph 𝑀 after the end of stage 1 where 𝑁𝑀(𝐴), (the external neighbourhood of 𝐴 in 
𝑀), is contained in a set 𝐵 of size at most 2𝑖 − 1. After applying Strategy S’, the minimum 
degree of 𝑀 is 12 so we can assume that 𝑖 ≥  5 and that there are at least 6𝑖 edges of 𝑀 
incident to 𝐴. 
 
Consider an edge 𝑒, where 𝑒 = (𝑢, 𝑣). Now assume that 𝑒 was chosen by 𝑣 ∈  𝐴 ∪ 𝐵 in the 
game. By Lemma 3, when choosing e Breaker’s degree at 𝑣 was at most (1 − 𝛿)𝑛, while 
Maker’s degree at 𝑣 was at most 11. At that point of the game, there were at least 𝛿𝑛 − 12 
unclaimed edges incident to 𝑣. Therefore, the probability that Maker chose an edge at 𝑣 

whose second endpoint belongs to 𝐴 ∪ 𝐵 is at most 
|𝐴∪𝐵|−1

𝛿𝑛−12
, these 6𝑖 edges incident to 𝐴 

will end up entirely in 𝐴 ∪ 𝐵 is at most (
3𝑖−2

𝛿𝑛−12
)

6𝑖
. Now we can sum over all relevant values 

of 𝐼 and derive the probability the Maker’s strategy fails to create a 𝑘-expander.  
 
Therefore, the probability the Maker’s strategy fails to create a 𝑘0-expander is at most: 
 

∑ (
𝑛

𝑖
) (

𝑛 − 𝑖

2𝑖 − 1
)

5≤𝑖≤𝑘0

(
3𝑖 − 2

𝛿𝑛 − 12
)

6𝑖

≤  ∑ [
𝑒𝑛

𝑖
(

𝑒𝑛

2𝑖
)

2

(
4𝑖

𝛿𝑛
)

6

]

𝑖

5≤𝑖≤𝑘0

 

Strategy S': As long as there is a vertex of degree less than 12 in Maker’s graph, Maker 

chooses a vertex 𝑣 of degree less than 12 in his graph with the largest danger 

value 𝑑𝑎𝑛𝑔(𝑣) (breaking ties arbitrarily) and claims a random unclaimed edge 𝑒 

containing 𝑣. 
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= ∑ [45𝑒3 (
𝑖

𝑛
)

3 1

𝛿6
 ]

5≤𝑖≤𝑘0

𝑖

  . 

 
𝑔(𝑖) denotes the 𝑖-th term.  
 

Then for 5 ≤  𝑖 ≤ √𝑛 we have: 𝑔(𝑖) ≤  (𝑂(1)(ln 𝑛)
3

2 𝑛−
3

2)
6

=  𝑜 (
1

𝑛
). 

𝑔(𝑖) ≤ (
45𝑒3𝛿0

3

𝛿6 )
√𝑛

 is the estimate for √𝑛 ≤ 𝑖 ≤ 𝑘0. 

 
These equations imply that Maker’s strategy fails with negligible probability. Further, this 
means that Maker has a positive probability, (almost certain), of creating a 𝑘0-expander in 
the first 12𝑛 moves.  
 
Stage 2: Creating a connected expander 
Suppose the Maker’s graph is not yet connected by the end of Stage 1, it can be connected 
easily in a minimal number of moves. As proved earlier in Lemma 2, if 𝑀 is a 𝑘0-expander, 

all connected components of 𝑀 are of a size of at least 3𝑘0. At most, in the next 
𝑛

3𝑘0
− 1 

rounds the maker can claim an arbitrary edge between two of its connected components. 

Looking at the complete graph, we can see there are at least 9𝑘0
2  =

324𝑛2

ln (𝑛)
 edges between 

any two such components. We can also observe that Breaker will have a maximum of 

(12𝑛 +
𝑛

3𝑘0
) . 𝑏 <

13𝑛2

ln (𝑛)
 edges on the board claimed altogether. From this, we can see that 

Beaker will not be able to prevent Maker from claiming a full winning set. This stage lasts at 

most 
𝑛

3𝑘0
− 1 <  𝑛 rounds. 

 
Stage 3: Completing a Hamilton cycle 
Stage 1 ends with Maker creating a 𝑘0- expander. It follows that their graph at every 
subsequent round receives this expansion property. After Stage 2, Maker’s graph is already 
connected. 
 
However, by Lemma 1 at any round of Stage 3, Maker’s graph is either already Hamiltonian, 

or has at least 
𝑘0

2

2
 boosters. Maker would then go on to continuously add boosters in the 

next 𝑛 rounds, until Hamiltonicity is achieved.  
 
On the other hand, Breaker does not have enough edges on the board to block all of 
Maker’s boosters during these rounds. Therefore, the game lasts at most 12𝑛 + 𝑛 + 𝑛 =

14𝑛 rounds, during which Breaker puts at most 14𝑛 ∙ 𝑏 ≤
14𝑛2

ln 𝑛
 edges. This is less than the 

𝑘0
2

2
 

boosters that Maker puts down.  
 
Consequently, at any round of Stage 3, there exists an available booster for the respective 
Maker graph, and this would be claimed by Maker.  
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7. Conclusion 
We employed the method of quickly creating an expander first which has the potential to be 
applied to other biased combinatorial games. The strategy used in the argument is random 
and does not provide an explicit strategy for Maker to win the Hamiltonicity game close to 
the critical bias.  
 
The answer given is not the optimum however the purpose of the paper is not to find the 
optimum. The answer to the critical bias does not change and therefore does the optimum 
values are not required for the critical bias to hold.  
 
The strategy can be generalised to firstly, finding an expander quickly by implementing 
Gebauer-Szabo’s strategy. This strategy only fails with negligible probability. Second, Maker 
connects their graph. This can be done within a maximum number of rounds calculated in 
Stage 2. Finally, any number of required boosters can be continuously added to the graph 
until Hamiltonicity is achieved. From this winning strategy, the critical bias for the 

Hamiltonicity game between Maker and Breaker can be generalised as 
(1+𝑜(1))𝑛

ln 𝑛
 is proven 

true.  
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