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Abstract 

This paper will consider the works of He, Togbé and Ziegler along with Fujita to provide an 
expository explanation of the proof that Diophantine quintuples do not exist. The proof of this 
is an extension of Dujella’s work on proving that there is no Diophantine sextuple and that 
there are at most finitely many Diophantine quintuples.  
 

1. Introduction 
 
A Diophantine 𝑚-tuple is a set of 𝑚 positive integers 𝑎#, 𝑎%, … , 𝑎'  such that (𝑎) ⋅ 𝑎+) + 1 is 
a perfect square for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. 
 
Example 1: the set 1, 3, 8, 120  is a quadruple since 
 

1×3 + 1 = 2% 
1×8 + 1 = 3% 
3×8 + 1 = 5% 

1×120 + 1 = 11% 
3×120 + 1 = 19% 
8×120 + 1 = 31% 

are all perfect squares. 
 
Diophantus was the first to explore the problem of finding four numbers such that the product 
of any two of them increased by unity is a perfect square. He was the first to find the rational 
non-integral Diophantine quadruple #

#;
	 , ==

#;
	 , #>

?
	 , #@A

#;
. This set was extended by Euler by 

adding a fifth rational non-integral number, >>>?B@
B%BB;?#

 . More recently, the first set of six positive 
rational numbers was found by Gibbs.  However, the first Diophantine quadruple consisting of 
integers 1, 3, 8, 120  was found by Fermat.  
 
In 2004, it was proved by Dujella that there does not exist a sextuple and that there exists at 
most a finite number of Diophantine quintuples. This was expanded on in 2016 when He, 
Togbé and Ziegler showed there is no existence of a Diophantine quintuple. This expository 
paper will be exploring the proof of why no integer Diophantine quintuple exists. 
 
Theorem 1. There does not exist a Diophantine quintuple. 
 
When proving whether Diophantine quintuples exist or not, an element of great importance is 
the extensibility and existence of Diophantine 𝑚-tuples. For any fixed pair of integers 𝑎, 𝑏 >
0	such that 𝑎𝑏 + 1 = 𝑟% is a perfect square, i.e. 𝑎, 𝑏  is a Diophantine pair, it was proved by 
Euler that a third element can always be added to 𝑎, 𝑏  to obtain a Diophantine triple in the 
form 𝑎, 𝑏, 𝑎 + 𝑏 + 2𝑟  where 𝑟 = 𝑎𝑏 + 1. 
 



	
	

MA3517 Mathematics Research Journal © Amy Chung and Rakesh Raval, 2020
    

2	

In every Diophantine pair 𝑎, 𝑏  there exists infinitely many 𝑐 > 0 where 𝑐 ∈ ℤ  such that 
𝑎, 𝑏, 𝑐  is a Diophantine triple. Euler further noted that by adding 4𝑟(𝑎 + 𝑟)	(𝑏 + 𝑟) to the 

Diophantine triple, a Diophantine quadruple 𝑎, 𝑏, 𝑎 + 𝑏 + 2𝑟, 4𝑟(𝑎 + 𝑟)	(𝑏 + 𝑟)  can be 
attained. The result of this proves the existence of an infinite number of Diophantine 
quadruples. 
 
Allow there to be a Diophantine triple 𝑎, 𝑏, 𝑐  which does not have to be of the form 
𝑎, 𝑏, 𝑎 + 𝑏 + 2𝑟 , that is 𝑠 = 	𝑎𝑐 + 1 and 𝑡 = 𝑏𝑐 + 1 are both perfect squares. The 

mathematicians, Arkin, Hoggatt and Strauss [1] found that by adding 
 
𝑑L = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 + 2 (𝑎𝑏 + 1)(𝑎𝑐 + 1)(𝑏𝑐 + 1) = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 + 2𝑟𝑠𝑡 

 
to the Diophantine triple 𝑎, 𝑏, 𝑐 , a Diophantine quadruple is obtained:  
 

𝑎, 𝑏, 𝑎 + 𝑏 + 2𝑟, 4𝑟 𝑎 + 𝑟 𝑏 + 𝑟 , 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 + 2𝑟𝑠𝑡	 . 
 
A Diophantine quadruple of this form is referred to as a regular Diophantine quadruple. 
Currently, all known Diophantine quadruples are of this form.  
 
Theorem 2. Any Diophantine quintuple contains a regular Diophantine quadruple. 
 
Proof. This theorem was proved rigorously in Fujita’s paper [2]. 
 
Conjecture 1. If {𝑎, 𝑏, 𝑐, 𝑑} is a Diophantine quadruple such that 𝑑 > 𝑚𝑎𝑥 𝑎, 𝑏, 𝑐 , then 
 𝑑 = 𝑑L. 
 
This conjecture was verified by He and Togbé for triples of the form 𝑘, 𝐴%𝑘 +
2𝐴, 𝐴 + 1 %𝑘 + 2(𝐴 + 1)  with two parameters 𝑘 and 𝐴 where 2 ≤ 𝐴 ≤ 10 or 𝐴 ≥ 52330. 
They, as well as Fujita, showed that a triple can at most be extended to a regular quadruple. 
Furthermore, all known results carried out by mathematicians support this conjecture (see 
Table 1, page 3 in [3]). 
 
A proof for Conjecture 1 is yet to be found as it is unknown whether there are infinitely many 
irregular Diophantine quadruples or not.  
 
Lemma 1. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  is a Diophantine quintuple with 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 then 𝑑 = 𝑑L. 
 
This was found by Fujita [2] and it is an important lemma contributing towards the proof of 
Theorem 1. 
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2. Supplementary Results 
 
For a Diophantine triple 𝑎, 𝑏, 𝑐 , 𝑑L and 𝑑T are defined by  
 

𝑑L = 𝑑L 𝑎, 𝑏, 𝑐 = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 + 2 (𝑎𝑏 + 1)(𝑎𝑐 + 1)(𝑏𝑐 + 1) 
𝑑T = 𝑑T 𝑎, 𝑏, 𝑐 = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 − 2 (𝑎𝑏 + 1)(𝑎𝑐 + 1)(𝑏𝑐 + 1) . 

 
By letting 𝑎𝑏 + 1 = 𝑟%, 𝑎𝑐 + 1 = 𝑠% and 𝑏𝑐 + 1 = 𝑡%, we have 
 

𝑎𝑑± + 1 = 𝑟𝑠 ± 𝑎𝑡 % 
𝑏𝑑± + 1 = 𝑟𝑡 ± 𝑏𝑠 % 
𝑐𝑑± + 1 = 𝑐𝑟 ± 𝑠𝑡 % 

 
Without loss of generality, we may assume that 𝑎 < 𝑏 < 𝑐. Then the following two lemmas 
will be used regularly in this paper.  
 
Lemma 2. If {𝑎, 𝑏, 𝑐} is a Diophantine triple with 𝑎	 < 	𝑏	 < 	𝑐, then 
 

𝑐 = 𝑎 + 𝑏 + 2𝑟 or 𝑐 > 4𝑎𝑏. 
 
Lemma 3. 4𝑎𝑏𝑐 + 𝑐 < 𝑑L 𝑎, 𝑏, 𝑐 < 4𝑎𝑏𝑐 + 4𝑐. 
 
Proof. We will start with the first inequality 
 

𝑑L = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 + 2 (𝑎𝑏 + 1)(𝑎𝑐 + 1)(𝑏𝑐 + 1) 
> 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 + 2 (𝑎𝑏)(𝑎𝑐)(𝑏𝑐) = 𝑎 + 𝑏 + 𝑐 + 4𝑎𝑏𝑐 
> 𝑐 + 4𝑎𝑏𝑐 

 
For the second inequality, we collect all non-square root terms on the left-hand side and take 
the square root of both sides of the inequality to obtain 
 

4 𝑎𝑏 + 1 𝑎𝑐 + 1 𝑏𝑐 + 1 ≤ 2𝑎𝑏𝑐 + 3𝑐 − 𝑎 − 𝑏 %. 
 
We expand this inequality to get 
 

8𝑏%𝑎𝑐 + 8𝑎%𝑏𝑐 + 4𝑎𝑏 + 4𝑎𝑐 + 4𝑏𝑐 + 4 ≤ 8𝑐%𝑎𝑏 + 3𝑐 − 𝑎 − 𝑏 % 
 
and we move on to prove that this holds. By Lemma 2, we have 𝑐 ≥ 𝑎 + 𝑏 + 2𝑟. We must 
check that the inequality  
 

4𝑎𝑏 + 4𝑎𝑐 + 4𝑏𝑐 + 4 ≤ 16𝑟𝑎𝑏𝑐 + 3𝑐 − 𝑎 − 𝑏 %. 
 
Although, it is easy to see that  
 

4𝑎𝑏 + 4𝑎𝑐 + 4𝑏𝑐 + 4 ≤ 4𝑎𝑏𝑐 + 4𝑎𝑏𝑐 + 4𝑎𝑏𝑐 + 4𝑎𝑏𝑐 ≤ 16𝑟𝑎𝑏𝑐 + 3𝑐 − 𝑎 − 𝑏 %. 
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The following two lemmas are critical in the proof of Theorem 1. They will be used frequently, 
in particular, the inequality 𝑏 > 3𝑎 will be utilized (see page 6 in [3]). 
  
Lemma 4. Let {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} be a Diophantine quintuple with 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒. Then 𝑏 >
3𝑎. Moreover, if 𝑐 > 𝑎 + 𝑏 + 2 𝑎𝑏 + 1 then 𝑏 > 𝑚𝑎𝑥 24𝑎, 2𝑎

X
Y . 

 
Lemma 5. Let 𝑎, 𝑏, 𝑐, 𝑑  be a Diophantine quadruple with 𝑎 < 𝑏 < 𝑐 < 𝑑. If 𝑏 < 2𝑎 and 
𝑐 ≥ 9.864𝑏% or 2𝑎 ≤ 𝑏 ≤ 12𝑎 and 𝑐 ≥ 4.321𝑏?, or 𝑏 > 12𝑎 and 𝑐 ≥ 721.8𝑏?, then 𝑑 = 𝑑L. 
 
By combining Lemma 4 and 5, we obtain the following Lemma 6. 
Lemma 6. Let {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} be a Diophantine quintuple with 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒. Then we 
have 𝑎𝑐 < 180.45𝑏=. 
 
Lemma 7. Provided that {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} is a Diophantine quintuple with 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒, 
then 𝑏 ≥ 15, 𝑐 ≥ 24 and 𝑑 ≥ 1520. 
 
Proof. Only Diophantine quintuples are considered such that 𝑏 > 3𝑎 and (𝑎, 𝑏) ≠ (𝑘, 4𝑘 ± 4). 
(See lemma 6 in [3]) 
 
Firstly, take note that if 𝑟 > 15 then 𝑏 > 15. When searching for all Diophantine pairs {𝑎, 𝑏} 
such that 2 ≤ 𝑟 ≤ 15 we find that a minimal 𝑏 can be found from the Diophantine pair 1,15 . 
We determine that the smallest 𝑐 is 1 + 15 + 2 1 ∙ 15 + 1 = 24 because 𝑎 + 𝑏 + 2𝑟 strictly 
increases with 𝑎. Hence, the smallest Diophantine triple 1,15,24  may be extended to a 
Diophantine quintuple. Since any Diophantine triple 𝑎, 𝑏, 𝑐  that can be extended to a 
Diophantine quintuple 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  with 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 satisfies 𝑑 = 𝑑L 𝑎, 𝑏, 𝑐  (see 
Lemma 1), we deduce 𝑑 ≥ 𝑑L 1,15,24 = 1520. 

 
3. An Operator on Diophantine Triples 

 
This section will explore into Diophantine triples and the 𝜕-operator. We will start by defining 
Euler triples in terms of 𝑑T.  
 
Proposition 1. The Diophantine triple {𝑎, 𝑏, 𝑐} is a Euler triple if and only if 𝑑T 𝑎, 𝑏, 𝑐 = 0. 
 
Proof. Let 𝑎, 𝑏, 𝑐  be a Euler triple, then 𝑐 = 𝑎 + 𝑏 + 2𝑟, where 𝑟 = 	 𝑎𝑏 + 1. We have  
 

𝑎𝑐 + 1 = 𝑎 + 𝑟 and  𝑏𝑐 + 1 = 𝑏 + 𝑟. 
 
Utilizing these identities, we obtain 

 
𝑑T 𝑎, 𝑏, 𝑐 = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 − 2 𝑎𝑏 + 1 𝑎𝑐 + 1 𝑏𝑐 + 1  

= 2𝑎 + 2𝑏 + 2𝑟 + 2𝑎𝑏 𝑎 + 𝑏 + 2𝑟 − 2𝑟 𝑎 + 𝑟 𝑏 + 𝑟  
= 2𝑎 + 2𝑏 + 2𝑟 + 2𝑎%𝑏 + 2𝑎𝑏% + 4𝑎𝑏𝑟 − 2𝑟 2𝑎𝑏 + 𝑎𝑟 + 𝑏𝑟 + 1  
= 2𝑎 + 2𝑏 + 2𝑟 + 2𝑎%𝑏 + 2𝑎𝑏% − 2𝑎 𝑎𝑏 + 1 − 2𝑏 𝑎𝑏 + 1 − 2𝑟 = 0 

 
Alternatively, presuming that 𝑑T 𝑎, 𝑏, 𝑐 = 0 implies the following 
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𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏𝑐 % = 4 𝑎𝑏 + 1 𝑎𝑐 + 1 𝑏𝑐 + 1 . 
 
Upon expansion of this and further simplifying we arrive at the following equation: 

 
𝑎% + 𝑏% + 𝑐% − 2𝑎𝑏 − 2𝑎𝑐 − 2𝑏𝑐 = 4. 

 
Additional manipulations of this gives a result of 
 

(𝑐 − 𝑎 + 𝑏 )% = 4 𝑎𝑏 + 1 = 4𝑟% 
 
and finally, we get 

𝑐 = 𝑎 + 𝑏 ± 2𝑟. 
 
As 𝑐 > 𝑏 > 𝑎, the ′ − ′ can be left out so we get	𝑐 = 𝑎 + 𝑏 + 2𝑟, therefore it is proved that 
{𝑎, 𝑏, 𝑐} is an Euler triple. 

 
 
Proposition 2. Let 𝑎, 𝑏, 𝑐  be a Diophantine triple with 𝑐 = 𝑚𝑎𝑥 𝑎, 𝑏, 𝑐 .	We have  
 

𝑎 = 𝑑T 𝑏, 𝑐, 𝑑L 𝑎, 𝑏, 𝑐          (1) 
𝑏 = 𝑑T 𝑎, 𝑐, 𝑑L 𝑎, 𝑏, 𝑐 	        (2) 
𝑐 = 𝑑T 𝑎, 𝑏, 𝑑L 𝑎, 𝑏, 𝑐          (3) 

 
Provided 𝑎, 𝑏, 𝑐  is not an Euler triple, we have 𝑐 = 𝑑L 𝑎, 𝑏, 𝑑T 𝑎, 𝑏, 𝑐 . In particular, 
𝑎, 𝑏, 𝑑T# 𝑎, 𝑏, 𝑐 , 𝑐  is a regular Diophantine quadruple. 

 
Proof. Consider 𝑑L 𝑎, 𝑏, 𝑥 : ℝL → ℝL as a function with a fixed 𝑎 and 𝑏. Now consider the 
following equation where 𝑥 is not known and a fixed 𝑦 ∈ ℝL → ℝL thereby 𝑦 > max 𝑎, 𝑏, 𝑥 : 
 

𝑦 = 𝑎 + 𝑏 + 𝑥 + 2𝑎𝑏𝑥 + 2 (𝑎𝑏 + 1)(𝑎𝑥 + 1)(𝑏𝑥 + 1). 
 
By manipulating this, a quadratic equation is formed: 
 

(𝑎 + 𝑏 + 𝑥 + 2𝑎𝑏𝑥 − 𝑦)% = 4(𝑎𝑏 + 1)(𝑎𝑥 + 1)(𝑏𝑥 + 1). 
 
The two solutions when solving for 𝑥 are: 
 

𝑥 = 𝑎 + 𝑏 + 𝑦 + 2𝑎𝑏𝑦 + 2 (𝑎𝑏 + 1)(𝑎𝑦 + 1)(𝑏𝑦 + 1) 
𝑥 = 𝑎 + 𝑏 + 𝑦 + 2𝑎𝑏𝑦 − 2 (𝑎𝑏 + 1)(𝑎𝑦 + 1)(𝑏𝑦 + 1) 

 
We assumed that 𝑦 > 𝑥, so the first solution can be discarded. The second solution may be 
rewritten as 
 

𝑥 = 𝑑T 𝑎, 𝑏, 𝑦 = 𝑑T 𝑎, 𝑏, 𝑑L 𝑎, 𝑏, 𝑥 . 
 
One can see that the formulas for 𝑑L	and 𝑑T are symmetric in 𝑎, 𝑏 and 𝑐. Since this is the case, 
we obtain the formulas (1), (2) and (3). The fourth formula can be obtained similarly to the 
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previous ones. 𝑎, 𝑏, 𝑑T# 𝑎, 𝑏, 𝑐 , 𝑐  being a regular Diophantine quadruple is directly 
consequential from the formula 𝑐 = 𝑑T 𝑎, 𝑏, 𝑑L 𝑎, 𝑏, 𝑐 .  
 
Take note that we have 𝑐 = 𝑑L = 𝑑L 𝑎, 𝑏, 𝑑T 𝑎, 𝑏, 𝑐 . 

 
 
Lemma 8. Let 𝑎, 𝑏, 𝑐  be a Diophantine triple, then 𝑑T 𝑎, 𝑏, 𝑐 ≠ 𝑎, 𝑏, 𝑐. 
 
Proof. We assume that 𝑎 < 𝑏 < 𝑐, without loss of generality. First, start by claiming that 
2𝑟𝑠𝑡 > 2𝑎𝑏𝑐 + 𝑎 + 𝑏. This shows that 𝑑T 𝑎, 𝑏, 𝑐 < 𝑐, thus 𝑑T 𝑎, 𝑏, 𝑐 ≠ 𝑐. Verification of 
this claim will be carried out by showing that  
 

4 𝑎𝑏 + 1 𝑎𝑐 + 1 𝑏𝑐 + 1
= 4𝑎%𝑏%𝑐% + 4𝑎%𝑏𝑐 + 4𝑎𝑏%𝑐 + 4𝑎𝑏𝑐% + 4𝑎𝑏 + 4𝑎𝑐 + 4𝑏𝑐 + 4
> 2𝑎𝑏𝑐 + 𝑎 + 𝑏 % = 4𝑎%𝑏%𝑐% + 4𝑎%𝑏𝑐 + 4𝑎𝑏%𝑐 + 𝑎% + 𝑏% + 2𝑎𝑏. 

 
From this we must show that  
 

4𝑎𝑏𝑐% + 2𝑎𝑏 + 4𝑎𝑐 + 4𝑏𝑐 + 4 > 𝑎% + 𝑏% 
 
which can be noticed easily.  
 
Now consider the case where 𝑑T 𝑎, 𝑏, 𝑐 = 𝑎. This is seen as a quadratic equation in	𝑐. The 
equation is equal to 

𝑏 + 𝑐 + 2𝑎𝑏𝑐 = 2 (𝑎𝑏 + 1)(𝑎𝑐 + 1)(𝑏𝑐 + 1). 
 
Solving for 𝑐 gives the following solution 
 

𝑐 = 𝑎 + 𝑏 ± 4𝑎𝑏 + 4 + 4𝑎. 
 
As per the first assumption i.e. 𝑐 > 𝑏 > 𝑎, we may assume that 
 

𝑐 = 𝑎 + 𝑏 + 4𝑎𝑏 + 4 + 4𝑎 > 𝑎 + 𝑏 + 2𝑟. 
 
Then by Lemma 2, we have  

𝑐 = 𝑎 + 𝑏 + 4𝑎𝑏 + 4 + 4𝑎 > 4𝑎𝑏. 
 
After manipulating this we obtain the inequality below. 
 

4𝑎𝑏 + 4 + 4𝑎 > 4𝑎𝑏 − 𝑎 − 𝑏 % 
= 16𝑎%𝑏% − 8𝑎%𝑏 − 8𝑎𝑏% + 𝑎% + 𝑏% + 2𝑎𝑏 > 𝑎% + 𝑏% + 2𝑎𝑏.	(𝟒) 

 
We know 𝑏 > 3𝑎 by Lemma 2, so we get 

 
4𝑎𝑏 + 4 + 4𝑎 > 𝑎% + 3𝑎𝑏 + 2𝑎𝑏. 

 
Hence 4𝑎 + 4 > 4𝑎% and this gives 𝑎 = 1. When putting 𝑎 = 1	into the inequality 𝟒 , we 
obtain 
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4𝑏 + 4 > 1 + 𝑏% + 2𝑏 
 
giving us a contradiction unless 𝑏 < 4, however due to Lemma 7 the assumption is that  
𝑏 ≥ 15. Similarly, 𝑏 = 𝑑T 𝑎, 𝑏, 𝑐  is impossible. 

 
 
We may add 𝑑L to any Diophantine triple 𝑎, 𝑏, 𝑐  to obtain a regular Diophantine quadruple 
𝑎, 𝑏, 𝑐, 𝑑L . Particularly, three new Diophantine triples 𝑎, 𝑏, 𝑑L , 𝑎, 𝑐, 𝑑L  and 𝑏, 𝑐, 𝑑L  in 

relation to 𝑎, 𝑏, 𝑐  can be obtained from the triple 𝑎, 𝑏, 𝑐 . We may consider these three new 
Diophantine triples to be closer to an original triple {𝑎, 𝑏, 𝑐} rather than a Euler triple. Let us 
reverse this such that given a non-Euler triple {𝑎, 𝑏, 𝑐} we want a new Diophantine triple 
{𝑎′, 𝑏′, 𝑐′} that is closer to having the property of an Euler triple. To specify this, we introduce 
the 𝜕-operator. 
 
Definition 1. The operator 𝜕 sends a non-Euler triple 𝑎, 𝑏, 𝑐  to a Diophantine triple 
𝑎h, 𝑏h, 𝑐′  such that 

 
𝜕 𝑎, 𝑏, 𝑐 = 𝑎, 𝑏, 𝑐, 𝑑T 𝑎, 𝑏, 𝑐 − {𝑚𝑎𝑥 𝑎, 𝑏, 𝑐 }, 

 
where 𝑎, 𝑏, 𝑐, 𝑑T 𝑎, 𝑏, 𝑐 − {𝑚𝑎𝑥 𝑎, 𝑏, 𝑐 } denotes the set obtained by removing the maximal 
element from 𝑎, 𝑏, 𝑐, 𝑑T 𝑎, 𝑏, 𝑐 . For a positive integer 𝐷, the operator defined 𝜕Tj on 
Diophantine triples by: 
 

(i) For any Diophantine triple 𝑎, 𝑏, 𝑐  we define 𝜕@ 𝑎, 𝑏, 𝑐 = 𝑎, 𝑏, 𝑐 . 
(ii) Provided that 𝜕T jT# 𝑎, 𝑏, 𝑐  is not an Euler triple, we recursively define 

𝜕Tj 𝑎, 𝑏, 𝑐 = 𝜕(𝜕T jT# ( 𝑎, 𝑏, 𝑐 )) for 𝐷 ≥ 1.  
 
Additionally, we put 𝑑Tj 𝑎, 𝑏, 𝑐 = 𝑑T(𝜕TjL#( 𝑎, 𝑏, 𝑐 )). 
 

Particularly, we have 𝜕 = 𝜕T# and 𝜕T% 𝑎, 𝑏, 𝑐 = 𝜕(𝜕T#( 𝑎, 𝑏, 𝑐 )). 
The 𝜕-operator is well defined due to Lemma 8, i.e. a Diophantine triple 𝑎, 𝑏, 𝑐  is mapped to 
another Diophantine triple unless 𝑎, 𝑏, 𝑐  is not a Euler triple. 
 
Proposition 3. For any fixed Diophantine triple 𝑎, 𝑏, 𝑐 , there exists a unique nonnegative 
integer 𝐷 < klm	(nop)

klm	(#%)
 such that 𝑑T jL# 𝑎, 𝑏, 𝑐 = 0. 

 
Proof. Proposition 1 shows that if 𝑎, 𝑏, 𝑐  is a Euler triple, then this result is reached. 
 
Now, assume that 𝑎, 𝑏, 𝑐  is not a Euler triple. Through Proposition 2 we know that 
𝑎, 𝑏, 𝑑T# 𝑎, 𝑏, 𝑐 , 𝑐  is regular Diophantine quadruple. From Lemma 3 we determine that 𝑐 >
4𝑎𝑏 ∙ 𝑑T# 𝑎, 𝑏, 𝑐 . Particularly 𝑎𝑏 ∙ 𝑑T# 𝑎, 𝑏, 𝑐 < p

?
< nop

#%
. Note: 𝑎𝑏 ≥ 3. The implication of 

this is that the multiplication of 𝑎h𝑏h𝑐h of the elements of the corresponding triple 𝑎h, 𝑏h, 𝑐′ ≔
	𝜕Tr( 𝑎, 𝑏, 𝑐 ) is less than nop

#%s
. The is only true if the previous 𝑘 − 1 images were not Euler 

triples. Therefore, there exists some positive integer 𝐷 < tuv	(nop)
tuv	(#%)

 where 𝑎hh, 𝑏hh, 𝑐′′ ≔
	𝜕Tj( 𝑎, 𝑏, 𝑐 ) is a Euler triple. Through Proposition 1 we have 𝑑T jL# 𝑎, 𝑏, 𝑐 = 0.  
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𝐷 is unique due to the fact that the product	𝑎′𝑏′𝑐′ with 𝑎h, 𝑏h, 𝑐′ ≔ 	𝜕Tr( 𝑎, 𝑏, 𝑐 )  is 
decreasing with 𝑘 until we arrive at a Euler triple. 

 
 
 
Definition 2. A Diophantine triple 𝑎, 𝑏, 𝑐  is of degree 𝐷 and is generated by an Euler triple 
𝑎h, 𝑏h, 𝑐′ , if 𝑑T jL# 𝑎, 𝑏, 𝑐 = 0 and 𝜕Tj 𝑎, 𝑏, 𝑐 = 𝑎h, 𝑏h, 𝑐′ . If the triple 𝑎, 𝑏, 𝑐  is of 

degree 𝐷 we simply write 𝑑𝑒𝑔 𝑎, 𝑏, 𝑐 = 𝐷. 
 
Remark 1. Note that in the definition the triple 𝑎h, 𝑏h, 𝑐′  is a Euler triple due to Proposition 
1 since 𝑑T 𝑎h, 𝑏h, 𝑐′ = 0 by assumption. 
 
 
 

4. System of Pell Equations 
 
Definition 3. A Pell’s equation is any Diophantine equation of the form  
 

𝑛𝑦% + 1 = 𝑥% 
 
where 𝑛 is a given positive non-square integer and 𝑥 and 𝑦 are integer solutions to be found.  
 
Let {𝑎, 𝑏, 𝑐} be a Diophantine triple with 𝑎 < 𝑏 < 𝑐, and 𝑟, 𝑠, 𝑡 be positive integers such that  
 

𝑎𝑏 + 1 = 𝑟% 
𝑎𝑐 + 1 = 𝑠% 
𝑏𝑐 + 1 = 𝑡% 

 
Assume that {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} is a Diophantine quintuple with 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒, and take 
 

𝑎𝑑 + 1 = 𝑥% 
𝑏𝑑 + 1 = 𝑦% 
𝑐𝑑 + 1 = 𝑧% 

 
with 𝑥, 𝑦, 𝑧 ∈ ℤ. Then integers 𝑋, 𝑌, 𝑍,𝑊 exist such that 
 

𝑎𝑒 + 1 = 𝑋% 
𝑏𝑒 + 1 = 𝑌% 
𝑐𝑒 + 1 = 𝑍% 
𝑑𝑒 + 1 = 𝑊% 

 
We may assume that 𝑑 = 𝑑L is fixed due to Fujita’s results [4], then we have 
 

𝑥 = 𝑎𝑡 + 𝑟𝑠 
𝑦 = 𝑏𝑠 + 𝑟𝑡 
𝑧 = 𝑐𝑟 + 𝑠𝑡 
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By eliminating 𝑒 from the equations above, the following system of Pell equations can be 
found: 
 

𝑎𝑌% − 𝑏𝑋% = 𝑎 − 𝑏 
𝑎𝑍% − 𝑐𝑋% = 𝑎 − 𝑐 
𝑏𝑍% − 𝑐𝑌% = 𝑏 − 𝑐 
𝑎𝑊% − 𝑑𝑋% = 𝑎 − 𝑑 
𝑏𝑊% − 𝑑𝑌% = 𝑏 − 𝑑 
𝑐𝑊% − 𝑑𝑍% = 𝑐 − 𝑑 

 
Lemma 9. Every integer solution to a Pell equation of the form  
 

𝑎𝑌% − 𝑏𝑋% = 𝑎 − 𝑏 
 
with 𝑎𝑏 + 1 = 𝑟% is obtained from  
 

𝑌 𝑎 + 𝑋 𝑏 = 𝑦@ 𝑎 + 𝑥@ 𝑏 𝑟 + 𝑎𝑏
~

 
 
where 𝑛, 𝑥@ and 𝑦@ are integers such that 𝑛 ≥ 0, 
 

1 ≤ 𝑥@ ≤
𝑎 𝑏 − 𝑎
2 𝑟 − 1

 

 
and 
 

1 ≤ 𝑦@ ≤
(𝑟 − 1)(𝑏 − 𝑎)

2𝑎
 

 
  

5. Linear Forms in Logarithms 
 
Let Λ be a linear form in logarithms of 𝑁 multiplicatively independent totally real algebraic 
numbers 𝛼#, … , 𝛼� with rational integer coefficients 𝑏#, … , 𝑏� such that 𝑏� ≠ 0.  
 
Definition 4.  Λ# = 2ℎ𝑙𝑜𝑔 𝛼# − 2𝑗𝑙𝑜𝑔 𝛼% + 𝑙𝑜𝑔 𝛼=  where 𝛼# = 𝑟 + 𝑎𝑏, 𝛼% = 𝑠 + 𝑎𝑐,  
𝛼= =

p nL o
o nL p

 (see Lemma 26 of [3]). 

 
This definition is important for the proofs later on in the paper.   
 
Proposition 4. If {a, b, c, d, e} is a Diophantine quintuple with a < b < c < d < e, then we have 
𝑎𝑐 < 6.77 ∙ 10%A, 𝑑 < 1.83 ∙ 10A%. Provided that 𝑐 > 2 ∙ 10B, we have  
 

ℎ < 2.8376 ∙ 10#@𝑙𝑜𝑔(𝛼%)log	(𝑐) < 5.136 ∙ 10#=.	
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6. Euler Triples 
 
In this section, we will continue to assume that {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} is a Diophantine quintuple with 
𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 while also assuming that {𝑎, 𝑏, 𝑐, 𝑑} is an Euler quadruple of the form 
𝑎, 𝑏, 𝑎 + 𝑏 + 2𝑟, 4𝑟(𝑎 + 𝑟)(𝑏 + 𝑟) .  

 
Lemma 10. If 𝑛 ≡ −𝜀𝑟	 𝑚𝑜𝑑	𝑠𝑡 , then we have 𝑟 < 900154 and ℎ < 9.6 ∙ 10#A. 
 
Proof. This can be found in He, Togbé and Ziegler’s paper (cf. Lemma 25 in [3]) 

 
 
We may assume that 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  is Diophantine quintuple such that 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 and 
𝑎, 𝑏, 𝑐  is a Euler triple. Then, by Lemma 21 and Lemma 23-25 in He, Togbé and Ziegler’s 

paper [3], we have  
 

𝑟 < 900154 and ℎ < 1.9 ∙ 10#;.	
 
Lemma 11. Assume that 𝑀 is a positive integer. Let 𝑝/𝑞 be the convergent of the continued 
fraction expansion of a real number 𝜅 such that 𝑞 > 6𝑀 and let  
 

𝜂 = 𝜇𝑞 −𝑀 ∙ 𝜅𝑞  
 
where 	∙	  denotes the distance from the nearest integer. If 𝜂 > 0, then the inequality  
 

0 < 𝐽� − 𝐾 + 𝜇 < 𝐴𝐵T� 
 
has no solutions in integers 𝐽 and 𝐾 with  
 

𝑙𝑜𝑔	(
𝐴�
𝜂 )

log	(𝐵)
≤ 𝐽 ≤ 𝑀 

 
We apply Lemma 11 to 
 

𝛬# = 2ℎ𝑙𝑜𝑔 𝑟 + 𝑎𝑏 − 2𝑗𝑙𝑜𝑔 𝑠 + 𝑎𝑐 + 𝑙𝑜𝑔
𝑐 𝑎 + 𝑏
𝑏 𝑎 + 𝑐

	

 
with 𝑠 = 𝑎 + 𝑟, 𝑐 = 𝑎 + 𝑏 + 2𝑟 and 
 

𝜅 = klm �L no
klm �L np

     ,    𝜇 =
klm � �� �

� �� �

klm �L np
   ,    𝐴 = #

klm �L np
    ,    𝐵 = 𝑟 + 𝑎𝑏

%
 

 
and 𝐽 = 2ℎ, 𝑀 = 1.9 ∙ 10#;. He, Togbé and Ziegler ran a GP program to check all 58258307 
pairs (𝑎, 𝑏) such that 2 ≤ 𝑟 ≤ 900153. For all cases, 𝐽 ≤ 15 was obtained, which contradicts 
𝐽 = 2ℎ ≥ 4𝑐(𝑟 − 1) ≥ 48. 
 
Theorem 3. A Euler triple {𝑎, 𝑏, 𝑎 + 𝑏 + 2 𝑎𝑏 + 1} cannot be extended to a Diophantine 
quintuple. 



	
	

MA3517 Mathematics Research Journal © Amy Chung and Rakesh Raval, 2020
    

11	

7. Non-Euler Triples 
 
In this section, non-Euler triples will be explored and two cases will be considered: one case 
of a triple with a degree of one and the other case of a triple with a degree greater than one. We 
will start with the first case where it has a degree of one.  
 
Theorem 4. A Diophantine triple {𝑎, 𝑏, 𝑐} cannot be extended to a Diophantine quintuple if 
𝑑𝑒𝑔 𝑎, 𝑏, 𝑐 = 1. 
 
Proof. Assume 𝑎 < 𝑏 < 𝑐. If deg 𝑎, 𝑏, 𝑐 = 1, then {𝑑T#, 𝑎, 𝑏} is a Euler triple, where  
 

𝑑T# = 𝑑T(𝑎, 𝑏, 𝑐). 
 
The quadruple {𝑑T#, 𝑎, 𝑏, 𝑐} is regular due to Proposition 2. Thus, we have  
 

𝑑T# = 𝑎 + 𝑏 ± 2𝑟 
and  

𝑐 = 𝑑L 𝑎, 𝑑T#, 𝑏 = 4𝑟 𝑟 ± 𝑎 𝑏 ± 𝑟  
 

Assuming 𝑏 > 10000, then 𝑑T# ≥ 𝑎 + 𝑏 − 2 oY

%?
+ 1 > 0.59𝑏 with 𝑐 > 𝑎𝑏𝑑T# and we get 

 
2.36(𝑎𝑏)% < 4𝑎%𝑏𝑑T# < 𝑎𝑐 < 6.77 ∙ 10%A 

 
Hence, 𝑎𝑏 < 5.36 ∙ 10#% and 𝑟 ≤ 2315167 is obtained. Since 𝑏 > 𝑚𝑎𝑥 24𝑎, 2𝑎

X
Y  due to 

lemma 4, we have 𝑎 < �Y

%

Y
¡ < 93596.  

 
We apply Lemma 11 to Λ# and check 109748916 pairs (𝑎, 𝑟) such that 
 

𝑏 = �YT#
n

     ,      𝑐 = 4𝑟(𝑟 ± 𝑎)	(𝑏 ± 𝑟) 
 
and 𝜅,	𝜇, 𝐴, 𝐵 are taken as in the previous section.  
 
Furthermore, we take 𝐽 = 2ℎ and 𝑀 = 1.9 ∙ 10#;. It took 16 hours to run He, Tobgé and 
Ziegler’s GP program. For all 219498932 cases, there is 𝐽 ≤ 15, which contradicts the fact that 
𝐽 = 2ℎ > 10 𝑎𝑐 > 20 2. 

 
 
Next, the case of the triple with a degree greater than one will be looked at. 
 
Theorem 5. A Diophantine triple {𝑎, 𝑏, 𝑐} cannot be extended to a Diophantine quintuple if 
𝑑𝑒𝑔 𝑎, 𝑏, 𝑐 ≥ 2. 
 
Proof. Consider a Diophantine triple {𝑎, 𝑏, 𝑐} with 𝑑𝑒𝑔 𝑎, 𝑏, 𝑐 ≥ 2. By Proposition 4, we 
assume that 𝑎𝑐 < 6.77 ∙ 10%A. Since 𝑑𝑒𝑔(𝑎, 𝑏, 𝑐) ≥ 2, there exists positive integers 𝑑T# and 
𝑑T% such that  
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𝑑T# = 𝑑T 𝑎, 𝑏, 𝑐  
		𝑑T% = 𝑑T(𝑎, 𝑏, 𝑑T#) 

 
Since {𝑎, 𝑏, 𝑐} is not a Euler triple, we have 𝑐 > 𝑎 + 𝑏 + 2𝑟 where 𝑟 = 𝑎𝑏 + 1 and 𝑐 > 𝑎𝑏 
(by Lemma 1). We also have 𝑎𝑐 < 180.45𝑏= (by Lemma 5). This gives 
 

4𝑎𝑏 < 𝑐 < 180.45 o
X

n
. 

 
The remainder of the proof will split the interval (4𝑎𝑏, 180.45 o

X

n
) into five subintervals: 

 

𝑐 ∈ 4𝑎𝑏, 4𝑎
#
% 𝑏

=
% ∪ 4𝑎

#
% 𝑏

=
%, 4𝑎𝑏% ∪ 4𝑎𝑏%, 4𝑎

=
%𝑏

A
% ∪ 4𝑎

=
% 𝑏

A
%, 4𝑎%𝑏=

∪ 4𝑎%𝑏=,
180.45𝑏=

𝑎
 

 
Note: the last interval 4𝑎%𝑏=, #B@.?Ao

X

n
 is not empty if and only if 1 ≤ 𝑎 ≤ 3. 

 
Case 1:  
We have the interval 4𝑎𝑏 < 𝑐 ≤ 4𝑎

£
Y𝑏

X
Y. Since 𝑐 = 	𝑑L(𝑎, 𝑏, 𝑑T#), we have 𝑐 > 4𝑎𝑏𝑑T#. From 

this, we have  

𝑎𝑑T# <
𝑐
4𝑏

< (𝑎𝑏)
#
% 

 
in which we can obtain 𝑎𝑏 > (𝑎𝑑T#)%. Since 𝑐 > 4𝑎𝑏𝑑T# , we get 𝑎𝑐 > 4(𝑎𝑏)(𝑎𝑑T#) and  
 

𝑎𝑑T# <
np
?

£
X < ;.>>∙#@Y¡

?

£
X < 256749472. 

 
Let 𝑟(n,¤¥£) = 𝑎𝑑T# + 1. Since 𝑎𝑑T# + 1 is a perfect square, 𝑟(n,¤¥£) is a positive integer with 
2 ≤ 𝑟(n,¤¥£) ≤ 16023. He, Togbé and Ziegler ran a short GP program to find the number of 
pairs (𝑎, 𝑑T#) to be checked in this range (see page 38 in [3]). Notice that 𝑎, 𝑑T#, 𝑏  is a 
Diophantine triple.  
 
For a fixed pair (𝑎, 𝑑T#), positive integers 𝑈 = 𝑟 = 𝑎𝑏 + 1 and 𝑉 = 𝑏𝑑T# + 1 exist such 

that 𝑏 = 	 ¨
YT#
¤¥£

= ©YT#
n

 and 𝑚𝑎𝑥 𝑈, 𝑉 ≤ 𝑏
£
Y. We have  

 
4𝑎%𝑏 < 𝑎 ∙ 4𝑎𝑏 < 𝑎𝑐 < 6.77 ∙ 10%A 

 
and now may assume that 𝑚𝑎𝑥 𝑈, 𝑉 ≤ 4.12 ∙ 10#%.  
 
To find all possible values of 𝑏, the following Pell equation is used: 
 

𝒜𝒱 − ℬ𝒰% = 𝒜 − ℬ	(5) 
 
where 𝒜ℬ + 1 = ℛ%, 𝒜 < ℬ and 0 < 𝒜,ℬ,ℛ ∈ ℤ. All positive integer solutions to (5) can 
be obtained by (Lemma 8): 
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𝒱 𝒜 +𝒰 ℬ = 𝒱� 𝒜 +𝒰� ℬ = 𝒱@ 𝒜 +𝒰@ ℬ ℛ + 𝒜ℬ
�
	

 
with 𝑞 ≥ 0, where (𝒱@,𝒰@) is a fundamental solution to (5). This satisfies 
 

0 ≤ 𝒱@ ≤
1
2
𝒜 ℬ −𝒜 ℛ − 1 	

and 

0 < 𝒰@ ≤
𝒜(ℬ −𝒜)
2(ℛ − 1)

	

 
All 𝑟 n,¤¥£  in the range from 2 to 16023 can be operated in the GP program.  
 
For each ℛ = 𝑟 n,¤¥£ , consider the divisors 𝑑h of ℛ% − 1 with 1 ≤ 𝑑′ ≤ ℛ	and let 𝒜 = 𝑑′, 
ℬ = (ℛ% − 1)/𝒜. For each pair (𝒜, ℬ), all possible fundamental solutions (𝒱@, 𝒰@) to 
equation (5) can be found while considering the corresponding sequences 𝒰�. Note that not all 
solutions 𝒰 of (5) satisfy 𝒜|(𝒰% − 1). If 𝒜|(𝒰% − 1) and 𝒰 = 𝒰� < 4.12 ∙ 10#%, then 

(𝑎, 𝑑T#, 𝑏) or 𝑑T#, 𝑎, 𝑏 = (𝒜,ℬ, 𝒞) and 𝑐 = 𝑑L(𝑎, 𝑑T#, 𝑏) where 𝒞 = 𝒰YT#
𝒜

. 
 
By applying Lemma 11 to Λ#, all 2340242 triples 𝑎, 𝑏, 𝑐  can be checked in 15 minutes using 
the GP program. For all cases, 𝐽 ≤ 6 is obtained, however this is impossible as 𝐽 > 20 2. 
 
 
Case 2:  
We have the interval 4𝑎

£
Y𝑏

X
Y < 𝑐 ≤ 4𝑎𝑏%.	 Since 𝑐 = 𝑑L 𝑎, 𝑏, 𝑑T# ,	by assumption we get 

𝑑T# <
p
?no

< 𝑏. This gives 𝑏 = max 𝑎, 𝑏, 𝑑T#  and Lemma 3 yields 𝑐 < 4𝑏(𝑎𝑑T# + 1). 

Conversely, by assumption we have that 4𝑎
£
Y𝑏

X
Y < 𝑐 and we get (𝑎𝑏)

£
Y − 1 < 𝑎𝑑T#. Hence, we 

get 
 

𝑑T% = 𝑑T 𝑎, 𝑏, 𝑑T# <
𝑏

4𝑎𝑑T#
<

𝑏

4 𝑎𝑏
#
% − 1

 

and  
 

4𝑎𝑑T% <
𝑎𝑏

(𝑎𝑏)
#
% − 1

< (𝑎𝑏)
#
% + 2 

 
 
From (4𝑎𝑑T% − 2)% < 𝑎𝑏 < (𝑎𝑑T# + 1)%, we have 4𝑎𝑑T% < 𝑎𝑑T# + 3 and so 𝑑T% < 𝑑T#. 
By substituting 𝑎𝑏 > (4𝑎𝑑T% − 2)% into 𝑎𝑐 > 4 𝑎𝑏 𝑎𝑑T# > 4 𝑎𝑏 𝑎𝑑T% , we obtain 
 

4 4𝑎𝑑T% − 2 % 𝑎𝑑T% < 𝑎𝑐 < 6.77 ∙ 10%A. 
 
Therefore, 𝑎𝑑T% < 101891096 and we get 𝑟(n,¤¥Y) = 𝑎𝑑T% + 1 ≤ 10095. 
Furthermore, we know that  
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𝑑T# < 𝑏 <
6.77 ∙ 10%A

4

%
=
< 6.6 ∙ 10#; 

 
Analogously to Case 1, we put (𝑎, 𝑑T%) or 𝑑T%, 𝑎 = 	 (𝒜, ℬ) in equation (5). We set 

(𝑎, 𝑑T%, 𝑑T#) or 𝑑T%, 𝑎, 𝑑T# = 	 (𝒜, ℬ, 	𝒰²
YT#
𝒜

) when 𝒜|	𝒰�
% − 1, for 	𝒰� < 𝑏

£
Y < 2.57 ∙ 10B. 

By applying Lemma 11 to Λ#, all 2565234 triples 𝑎, 𝑏, 𝑐  can be checked in 20 minutes using 
𝑏 = 𝑑L(𝑎, 𝑑T#, 𝑑T%) and 𝑐 = 𝑑L(𝑎, 𝑏, 𝑑T#). For all cases, 𝐽 ≤ 6 was obtained which is 
impossible as 𝐽 > 20 2. 
 
Case 3: 
We have the interval 4𝑎𝑏% < 𝑐 ≤ 4𝑎

X
Y𝑏

¡
Y.  

 
We see that the inequality 4𝑎%𝑏% < 𝑎𝑐 < 6.77 ∙ 10%A yields the upper bound 𝑟 < 2028300. 
Since 𝑏

£
Y < 𝑎𝑏 + 1 = 𝑟, we have an upper bound for  𝑏

£
Y. 

 
If we assume that 𝑏 > 𝑑T#, then 𝑏 = 𝑑L 𝑎, 𝑑T#, 𝑑T% > 4𝑎𝑑T# and this would give 𝑑T# <

o
?n

. 
However, this yields 
 

4𝑎𝑏% < 𝑐 < 4𝑎𝑏𝑑T# + 4𝑏 < 𝑏% + 4𝑏 
 
which is impossible. As a result, we may assume that 𝑏 < 𝑑T#. Since 𝑑T# <

p
?no

, we get 
 

𝑑T# < 𝑎
#
%𝑏

=
% 

and thus, 
 

𝑎𝑑T% <
𝑑T#
4𝑏

<
(𝑎𝑏)

#
%

4
<
𝑟
4
< 507075 

 
If 𝑟(n,¤¥Y) = 𝑎𝑑T% + 1 , then we have 𝑟(n,¤¥Y) ≤ 712. Similar to Case 1, we set (𝑎, 𝑑T%) or 

(𝑑T%, 𝑎) = 𝒜,ℬ  in equation (5). We set (𝑎, 𝑑T%, 𝑏) or 𝑑T%, 𝑎, 𝑏 = 	 (𝒜, ℬ, 	𝒰²
YT#
𝒜

)	when 

𝒜|	𝒰�
% − 1, for 	𝒰� < 𝑏

£
Y < 2028300.  

 
We apply Lemma 11 to Λ# by using 𝑑T# = 𝑑L(𝑎, 𝑑T%, 𝑏) and 𝑐 = 𝑑L(𝑎, 𝑏, 𝑑T#) to check all 
102032 triples (𝑎, 𝑏, 𝑐) in 1 minute and 15 seconds using the GP program mentioned 
previously. For all cases, 𝐽 ≤ 14 was obtained, which contradicts 𝐽 > 20 2 . 
 
Case 4: 
We have the interval 4𝑎

X
Y𝑏

¡
Y < 𝑐 ≤ 4𝑎%𝑏=. Similar to Case 3, we may assume that  

𝑏 < 𝑑T#. We have  
𝑑T# <

p
?no

< 𝑎𝑏%     and       𝑑T% <
¤¥£
?no

< o
?
 

 
The implication of these inequalities is that 𝑎, 𝑑T%, 𝑏  is not a Euler triple. Thus, a positive 
integer exists 
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𝑑T= = 𝑑T(𝑎, 𝑑T%, 𝑏) 
 
Now, we estimate the upper bound of 𝑎𝑑T=. By applying Lemma 3 to the Diophantine 
quadruple 𝑎, 𝑏, 𝑑T#, 𝑐 , we have 𝑐 < 4𝑎𝑏𝑑T# + 4𝑑T#. This implies that  
 

𝑑T# >
𝑐

4𝑎𝑏 + 4
>

𝑎
=
%𝑏

A
%

𝑎𝑏 + 1
 

 
The Diophantine quadruple 𝑎, 𝑑T%, 𝑏, 𝑑T#  provides 𝑑T# < 4𝑎𝑏𝑑T% + 4𝑏, so  
 

𝑑T% >
𝑑T# − 4𝑏
4𝑎𝑏

 
With 𝑏 > 4𝑎𝑑T%𝑑T=, we have  
 

𝑎𝑑T= <
𝑏

4𝑑T%
<

𝑎𝑏%

𝑑T# − 4𝑏
<

𝑎𝑏

(𝑎𝑏)
=
%

𝑎𝑏 + 1 − 4

 

 
Conversely, 4 𝑎𝑏

¡
Y < 𝑎𝑐 < 6.77 ∙ 10%A yields 𝑎𝑏 < 1.24 ∙ 10#@. Therefore, we obtain 

 
𝑎𝑑T= < 111360 

 
Let 𝑟(n,¤¥X) = 𝑎𝑑T= + 1 , then we get 𝑟(n,¤¥X) ≤ 333. There are 8854 pairs (𝑎, 𝑑T=) that 
satisfy this inequality. Put (𝑎, 𝑑T=) or (𝑑T=, 𝑎) = 	 (𝒜, ℬ) into equation (5). To obtain solutions 

for this equation, we put  (𝑎, 𝑑T=, 𝑑T%) or (𝑑T=, 𝑎, 𝑑T%) = 	 (𝒜, ℬ,
	𝒰²YT#
𝒜

) if 𝒜|	𝒰�
% − 1. 

 
Since 𝑏 ≤ 𝑎𝑏 < 1.24 ∙ 10#@, we may assume 𝒰� < 𝑏

£
Y < 111356. Additionally, we compute 

𝑏 = 𝑑T(𝑎, 𝑑T=, 𝑑T%), 𝑑T# = 𝑑L(𝑎, 𝑑T%, 𝑏) and 𝑐 = 	𝑑L(𝑎, 𝑏, 𝑑T#) and apply Lemma 11 to Λ#. 
All 36762 triples (𝑎, 𝑏, 𝑐) are checked in 26 seconds using the GP program and 𝐽 ≤ 6 was 
obtained for all cases, which contradicts the fact that 𝐽 > 20 2. 
 
Case 5: 
We have the interval 4𝑎%𝑏= < 𝑐 ≤ #B@.?AoX

n
. This is not empty if and only if 1 ≤ 𝑎 ≤ 3. If it is 

nonempty, we have 4𝑎= < 180.45. Evidently, 𝑏 < 𝑑T#. Using Lemma 3, we have  
 

𝑎%𝑏=

𝑎𝑏 + 1
<

𝑐
4(𝑎𝑏 + 1)

< 𝑑T# <
𝑐
4𝑎𝑏

<
45.2𝑏%

𝑎%
								(6) 

 
We have 𝑑T% = 𝑑T 𝑎, 𝑏, 𝑑T# < ¤¥£

?no
< ##.=o

nX
. 

 
If the Diophantine triple 𝑎, 𝑏, 𝑑T%  is not a Euler triple, then a positive integer  
𝑑T= = 𝑑T(𝑎, 𝑏, 𝑑T%) exists.  
 
When 𝑏 < 𝑑T%, we have 𝑑T% > 4𝑎𝑏𝑑T= ≥ 12𝑏. We have 𝑑T% <

##.=o
nX

 and 𝑑T% ≥ 12𝑏 
providing 12𝑎= < 11.3, which is impossible.   
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When 𝑏 > 𝑑T%, then 𝑏 > 4𝑎𝑏𝑑T%𝑑T= ≥ 12𝑑T%. Since 𝑑T# < 4𝑎𝑏𝑑T% + 4𝑏, we have 𝑑T% >
¤¥£T?o
?no

, so 𝑏 > 12𝑑T% ≥
=¤¥£T#%o

no
. This implies that 𝑑T# <

noYL#%o
=

. Combining this with (6), 
we get  

𝑎%𝑏=

𝑎𝑏 + 1
<
𝑎𝑏% + 12𝑏

3
 

 
As a result, we get 2𝑎%𝑏% − 13𝑎𝑏 − 12 < 0. We have 𝑎𝑏 < 8 which leads to 𝑎, 𝑏 = 1, 3  
or 2, 4 . However, there is no integer 𝑑% that is less than 𝑏 such that 𝑎, 𝑑T%, 𝑏  is a 
Diophantine triple. Thus, the Diophantine triple 𝑎, 𝑏, 𝑑T%  is a Euler triple.  
 
For 1 ≤ 𝑎 ≤ 3 and 𝑟 ≤ 16023, we have  
 

𝑏 =
𝑟% − 1
𝑎

 
and  

𝑑T% = 𝑎 + 𝑏 ± 𝑟 = 𝑎 +
𝑟% − 1
𝑎

± 2𝑟 
 
Furthermore, we calculate 𝑑T# = 𝑑L(𝑎, 𝑑T%, 𝑏) and 𝑐 = 𝑑L 𝑎, 𝑏, 𝑑T# . 
All 69428 triples (𝑎, 𝑏, 𝑐) were checked in 40 seconds, and 𝐽 ≤ 16 was obtained for all cases, 
which contradicts 𝐽 > 20 2 again.  
 
Since all cases are contradictions of 𝐽 > 20 2, we conclude that a Diophantine triple 𝑎, 𝑏, 𝑐  
cannot be extended to a Diophantine quintuple if deg	(𝑎, 𝑏, 𝑐) ≥ 2. 

 
 
We will now proceed to give an outline of the proof of Theorem 1 using what has been 
addressed in the paper above. 
 
 

8. Proof of Theorem 1  
 
Assume that 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  is a Diophantine quintuple with 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒. By Theorem 2 
(cf. page 1678-1697 in [2]),  
 

𝑎, 𝑏, 𝑐, 𝑑  
 
is a regular quadruple, that is 𝑑 is solely determined by 𝑎, 𝑏 and 𝑐.  
 
By Proposition 3, for some arbitrarily fixed Diophantine triple {𝑎, 𝑏, 𝑐}, there exists a positive 
integer 𝐷 = deg	(𝑎, 𝑏, 𝑐) such that an Euler triple 𝑎h, 𝑏h, 𝑐′  generates 𝑎, 𝑏, 𝑐 .  
 
Theorem 3,4 and 5 show that for 𝐷 = 0, 1	and 𝐷 ≥ 2 there is no extension from a Diophantine 
triple to a quintuple {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.  
 
This concludes the proof of Theorem 1. 
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