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Abstract 
 

This paper teaches and expands on the basics of probability using the birthday paradox. This 
was chosen as it is an interesting topic with surprising results, which should encourage 
beginners to read on. The paper shows that if there are 23 people in a room, then there is a 
0.5 probability that people in the room share the same birthday. A general formula is then 
given which can be applied for different desired probabilities, numbers of items and 
numbers of possible outcomes.  

 

Introduction 
 

It is easy to see why most of the population doesn’t understand mathematics, or even 
dislikes it. On many occasions, the answer that most people would find logical is nowhere 
close to the actual answer. One example of this is the birthday paradox. This paper will 
explain this paradox so that anyone with limited mathematical knowledge can understand 
it.  
 
So, what actually is the birthday paradox? It is the idea that even in a small room full of 
people, it is highly likely that at least two people will share the same birthday.  

 

Is it logical? 
 

Why is it that the birthday paradox seems so irrational? It is mainly down to the fact that 
mankind is simple-minded and overall are self-centred. When in a room of 23 people, most 
of us will simply consider our own birthdays against everyone else’s. This leads to only 22 
comparisons. When making only 22 comparisons, it is obvious why you would most likely 
presume that everyone has a different birthday to you. In fact, with only 22 comparisons, 
there is approximately a 0.06 probability that there would be a matching birthday. This isn’t 
all we need to consider though. We also need to look at the comparisons between 
everybody else. By only considering your own comparisons, you are actually completely 
ignoring an extra 231 pairings. This quite quickly shows us why this paradox is more logical 
than first thought. 

 

 
 



Flipping a coin example 
 

To illustrate how probabilities work, we are going to look at the simple example of flipping a 
coin [5].  Let’s talk about the likelihood of landing on a head.  

 

𝑃(𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑎 ℎ𝑒𝑎𝑑) =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 ℎ𝑒𝑎𝑑𝑠 𝑜𝑛 𝑎 𝑐𝑜𝑖𝑛

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 ℎ𝑒𝑎𝑑𝑠 𝑎𝑛𝑑 𝑡𝑎𝑖𝑙𝑠 𝑜𝑛 𝑎 𝑐𝑜𝑖𝑛
=

1

2
= 0.5                  (1) 

 
The following formula shows the probability of any event occurring: 
 

                            𝑃(𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑖𝑡 𝑐𝑎𝑛 ℎ𝑎𝑝𝑝𝑒𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
                                                      (2) 

 
Due to the fact that calculating a basic probability is done by division, it is a common 
mistake that people presume you can continue using division to calculate the probability 
that an event will occur multiple times. Most people could tell you that the chance of 
getting one head is 0.5 and getting two heads in a row is 0.25. Does this mean that as it is 
half as probable that you will throw two heads in a row as one, that you are ten times less 
likely to throw ten heads in a row? Anybody with some knowledge of probability will tell you 
that this is obviously not the case. Each time you flip a coin, the probability of landing on a 
head in all throws is exponentially less. This means for independent events, to calculate the 
probability of two events happening, you must multiply the probability of each event 
together.  

                                                          𝑃(𝐻) = (0.5)1 = 0.5 =
0.5

1
                                                        (3) 

 

                                              𝑃(𝐻 ∩ 𝐻) = 𝑃(𝐻)2 = (0.5)2 = 0.25 =
0.5

2
                                       (4) 

 

                                        𝑃(𝐻 ∩ 𝐻 ∩ 𝐻) = 𝑃(𝐻)3 = (0.5)3 = 0.125 ≠
0.5

3
                                 (5)  

   
𝑃(𝐻 ∩ 𝐻) is the notation for calculating the probability of throwing two heads. These 
calculations show how it might be easy to presume that probabilities can be simply 
calculated by division but this is not accurate. You might think that this is all quite irrelevant 
but it is important to show how probabilities work and how we need to use exponents to 
calculate the likelihood of matching birthdays. An exponent tells you how many times a 
number is used in a multiplication [4]. The equation below shows how an exponent works. 
The number 2 tells us that 0.5 is used twice in the equation. 
 
                                                            (0.5)2 = 0.5 ∙  0.5                                                                     (6) 
 
  

 
 

 
 



Explanation of the Birthday Paradox 
 

In a group of 23 people, we will have 253 pairs to look at. A pair is a matching of two people 
in the room. Each pair will be checked individually to see if they have matching birthdays.  
 
The first person has 22 comparisons to make, as they cannot be compared with themselves. 
This is then reduced by one for the second person as they have already been compared to 
the first. The comparisons continue to decrease by one until everyone has been compared. 
This shows that the amount of combinations is the sum of 1 to 22. This can be simply 
calculated as: 
 

                                                               1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
                                                      (7) 

 
 
Therefore, we get 253 pairs using the following calculation: 
 

                                                                       
22 ∙( 22+1)

2
= 253                                                             (8) 

 
The probability that two people have different birthdays is:  

 

                                                              1 −
1

365
=

364

365
= 0.997                                                         (9) 

 
This is down to the fact that probabilities must always be equal to one and there is only one 
birthday out of three hundred and sixty-five that has already been accounted for. 
So, what is the probability of no matching birthdays in 253 combinations? This can be 
calculated using the following: 

 

                                                                  (
364

365
)

253

= 0.4995                                                           (10) 

 
As we just said, probabilities will always total to one, so we can say that the probability of 
finding a match is 1-0.4995= 0.5005. This gives roughly a probability of 0.5 of finding a 
match. For clarity, a 0.5 probability is the same as saying that there is a 50% chance. 
 
In general, the probability of finding a match for any number n, where n is the number of 
people in the sample minus 1, is: 

 

                                                             𝑃(𝑛) = 1 −  (
364

365
)

𝑛(𝑛−1)

2
                                                       (11) 

 
 

 
 
 



Independence 
 

The next section of this paper is a little more complex. All of the calculations shown above 
are assuming that birthdays are independent of each other. All that we have checked is that 
each pairing doesn’t have a matching birthday. But is it possible for more than two people 
to have the same birthday? Obviously, yes. Therefore, we cannot just consider pairings and 
we must work out the probability of every single person within the room having a unique 
birthday. This isn’t too important when the number of people is small compared to the 
sample size, as multiple matches are less likely. Although the chances of this occurring are 
remote, it can happen so let’s look at the actual numbers involved. The below figure shows 
the formulas for the real probabilities. 
 
Figure 1 
 

Person Chance of having a unique birthday 

First 1 

Second 
1 −

1

365
 

Third 
1 −

2

365
 

Twenty-Third 
1 −

22

365
 

 
 
In order to find the real probabilities, we can use the following formula: 
 

                                  𝑝(𝑢𝑛𝑖𝑞𝑢𝑒) = 1 ∙ (1 −
1

365
) ∙ (1 −

2

365
) ⋯ (1 −

𝑛−1

365
)                                (12) 

 
 
The above formula tells us that we have a 0.493 probability of having 23 unique birthdays. 
This therefore leads us to a 0.507 probability of having a match compared to the originally 
calculated 0.5005. As you can see, as the number of people in the room was small, the 
original calculation was pretty accurate.   
 
The above p(unique) formula can be long-winded to calculate so we can use an 
approximation in order to simplify this. For this, we will use Taylor approximation. 
Taylor approximation says that when x is close to 0, 

 
                                                                        𝑒𝑥 ≈ 1 + 𝑥                                                                 (13) 
This is the same as saying: 
 
                                                                        𝑒−𝑥 ≈ 1 − 𝑥                                                                (14) 
 
 
This is equivalent to saying that 𝑒𝑥 is almost the same as 1+x.  
 



This is helpful as we can say that 
 

                                                                     1 −
1

365
≈ 𝑒−

1

365                                                             (15) 

 
This enables us to write our formula as: 

 

𝑝(𝑢𝑛𝑖𝑞𝑢𝑒) ≈ 1 ∙ 𝑒−
1

365 ∙ 𝑒−
2

365 ⋯ 𝑒−
𝑛

365                                           (16) 

 
It is also a rule with exponentials that: 

 
𝑒𝑎 ∙ 𝑒𝑏 = 𝑒𝑎+𝑏                                                             (17) 

 
This now means we have: 

 

𝑝(𝑢𝑛𝑖𝑞𝑢𝑒) ≈ 𝑒−
(1+2+⋯+𝑛)

365                                                   (18) 
 

Even simpler than this, we have already stated that: 
 

1 + 2 + ⋯ 𝑛 =
𝑛(𝑛+1)

2
                                                          (19) 

 
Therefore, we can say that: 

 

𝑝(𝑢𝑛𝑖𝑞𝑢𝑒) ≈ 𝑒−
(
22∙23

2
)

365 = 0.499998                                              (20) 

 
We can see that the approximation is very close to what we have previously calculated and 
we can, therefore, say that it is accurate.  

 

General Formula 
 

We can now give a general formula so that you can use what you’ve learned for n people 
and x total unique options available.  

 

𝑝(𝑢𝑛𝑖𝑞𝑢𝑒) ≈ 𝑒
−(𝑛2)

2𝑥                                                              (21) 

 
As you can see, we are using n squared rather than the originally given n times n+1. This is 
due to the fact that we have been approximating throughout so we don’t need to use the 
exact figure and this is a close enough approximation. The lower the n value, the closer the 
approximation will be. Also, using n squared removes the multiple levels of n which allows 
us to rearrange the formula to give us a final n figure. Using this formula, we can 
approximate an n value that will give a 0.5 probability of a match.  
 



𝑝(𝑢𝑛𝑖𝑞𝑢𝑒) ≈ 𝑒
−(𝑛2)

2𝑥                                                         (22) 
 

1 − 𝑝(𝑚𝑎𝑡𝑐ℎ) ≈ 𝑒
−(𝑛2)

2𝑥                                                    (23) 
 

1 − 0.5 ≈ 𝑒
−(𝑛2)

2𝑥                                                             (24) 
 

ln(0.5) ≈  
−(𝑛2)

2𝑥
                                                            (25) 

 
 −2𝑥𝑙𝑛(0.5) ≈ 𝑛2                                                            (26) 

 

𝑛 ≈ 1.177√𝑥                                                               (27) 
 

𝑛 ≈ 1.177√365 ≈ 22.5                                                    (28) 

 
This formula can now be used to approximate many different scenarios. Another example 
we can use here is roulette. There are 37 different outcomes on a roulette wheel so if we 
take x=37, we get n=9. Therefore, in 9 spins of the wheel, you have a 0.5 probability of the 
ball stopping on the same number multiple times. You can also expand this formula further 
so that you can change the desired chance of a match. At the moment, this formula is to 
find the n that gives a 0.5 probability of a match. The below formula can be used for any 
chosen probability.  
Let m equal the desired chance of a match, then: 
 

                                                       𝑛 ≈ √−2 ln(1 − 𝑚) ∙ 1.177√𝑥                                               (29) 

 
We can use birth months to show how this formula works. Say we want to work out how 
many people we need to get a 0.75 probability of having a matching birth month. 
This gives us the following formula: 
 

                                             𝑛 ≈ √−2 ln(1 − 0.75) ∙ 1.177√12 ≈ 6.8                                       (30) 
 
This shows us that we need approximately seven people in order to have a 0.75 probability 
of having at least two individuals born within the same month.  

 
 

Real World Observation 
 

This paper will now look into whether this paradox genuinely occurs in real life. As 
previously shown, it is thought that in a group of 23 people there is a fifty percent chance of 
having a matching birthday within the group. Which popular groups of people contain 23 
members? A football squad. In order to show real-life cases of this paradox, the paper will 
look into the 2018 FIFA World Cup squads [3]. There were 32 teams in the 2018 FIFA World 
Cup so we would, therefore, expect about 16 teams to have shared birthdays. It was found 



that in the 2018 FIFA World Cup, 15 out of the 32 teams had shared birthdays within them. 
This is 46.9%, which is close to what we were expecting to see and helps to show that this 
paradox is actually accurate. Interestingly, in some teams it was found that there was 
actually more than one set of matching birthdays. This just helps to show that it is actually 
very common to find matching birthdays within small groups of people. The number of sets 
of matching birthdays for each team is shown in Figure 2. 
 
Figure 2 

 
Team Number of sets of matched birthdays 

Australia 1 

Argentina 0 

Belgium 0 

Brazil 2 

Columbia 0 

Costa Rica 1 

Croatia 1 

Denmark 0 

Egypt 0 

England 1 

France 1 

Germany 1 

Iceland 0 

Iran 1 

Japan 0 

Mexico 0 

Morocco 1 

Nigeria 1 

Panama 0 

Peru 0 

Poland 4 

Portugal 3 

Russia 1 

Saudi Arabia 0 

Senegal 0 

Serbia 0 

South Korea 1 

Spain 1 

Sweden 0 

Switzerland 0 

Tunisia 0 

Uruguay 0 

 
 



 
Limitations 

 
There are limitations for these formulae. The first issue is that it is presumed that there are 
365 days in a year. Obviously, we know that on a leap year there are 366 days. We can 
change the x value to 366 but this would suggest that there is an equal probability of being 
born on the 29th February as there is any other day. This is obviously false.  
 
It is also assumed that the probability of being born on each day of the year is the same. 
Although this seems to be correct, there are often peaks and troughs when it comes to 
births. There can also be “baby booms” after large scale events, (often big sporting events), 
that will affect the percentage of births each day. An example of this is FC Barcelona’s 
dramatic last-minute win in the semi-finals of the UEFA Champions League 2009. Nine 
months after this event, the birth rates in Barcelona had increased by 45% [6]. This shows 
how the average birth rate on each individual day is unlikely to be consistent.  
 
Looking at data into the skew of birth dates, you see that a larger number of the most 
common birthdays are in September [8]. This is easily explained. These dates are 9-months 
after the Christmas period. These are periods that are deemed to be romantic and are also 
times of the year where people are likely to have time off of work.  Also, in some cases, 
people chose to not conceive so that they do not give birth on certain days of the year. It is 
shown that Christmas Eve and Christmas Day are two of the lowest days in relation to the 
average birth rates. All of these show how it is not correct to assume that the chance of 
being born on each day has the same probability.  
 
An easy way of explaining this limitation is through the exaggerated model of football fans. 
Using the general formula, you can use x=20 for the 20 teams that play in the Premier 
League. This gives an n value (previously shown as the number of people in a room when 
using the general formula), of just over 5. We can, therefore, say that if 6 football fans are in 
a room then you have at least a probability of 0.5 of two people supporting the same team. 
This doesn’t work, as the number of supporters of each Premier League team is massively 
different and therefore the probabilities of a fan supporting each team varies greatly. 
According to statistics, Manchester United FC have around 73 million supporters compared 
to Huddersfield Town A.F.C, who have about 140 thousand [7]. You can easily see from 
these numbers that the probabilities of finding a supporter from each club are greatly 
different. Another thing to note is that with some examples the location of a study will have 
an impact. Quite obviously if the above study was undertaken in Liverpool, then the data 
will be skewed towards Liverpool fans. This doesn’t apply when studying birthdays but is 
something to think about when using the general formula for other problems.  
 

 
Conclusion 

 
This paper introduces basic concepts in probability by explaining the Birthday Paradox. It is 
seen that you have a probability of 0.5 of sharing a birthday when comparing 23 random 



people. We then showed how the formula can be applied in different situations with varying 
probabilities. We also see how many questions can be approximated accurately allowing us 
to use much simpler calculations. This helps us to show how mathematics can often be 
much easier than first thought.   
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