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Abstract

We examine the minimum mass necessary to build the power system for a Death Star, as shown in the

Star Wars series of films, using current technology. Considering its powerplant as a Carnot engine we are

able to find a balance between the necessary mass of reactor and heat radiators so as to reduce the overall

mass of the Death Star’s power system to 6.8 × 1025 kg, around 930 lunar masses to 2 significant figures.

Introduction

The Star Wars [1] films depict a vessel, called
the Death Star, capable of destroying planets
with a laser. This laser has a power 5.7 ×
1026 W, calculated from the beam’s energy [2]
and the 3.5 s of screen-time for which the
beam is in operation [1]. We will assume that
the Death Star’s power system consists of 3
main components: a nuclear fission reactor,
outputting thermal power Pn at temperature Th,
with mass Mn; a heat radiator of area A, mass
Mr, and temperature Tc being used to dump
waste thermal power Pw into space; and a laser
consuming electrical power Pl, to produce the
laser beam. High power lasers commonly have
an efficiency of around 30% [3]. We therefore
assume that for a 5.7 × 1026 W beam the laser
consumes Pl = 1.9 × 1027 W. Power wasted
within the laser is disposed of via systems built
into the laser. As this paper only calculates
the mass of the Death Star’s power systems,
the design and mass of the laser and its built-in
systems for removing the waste heat generated
within the laser are ignored. We assume that
the Death Star operates in a steady state; not

needing time to cool or recharge between shots.

Carnot engines and radiators

A Carnot engine gives the most efficient
conversion of a thermal gradient into useful
power. The efficiency, εc, for such an engine
operating between a hot reservoir and a cold
reservoir is given by Eq.(1) [4].

εc = 1 − Tc
Th

=
Pl
Pn

(1)

On our Death Star the hot reservoir is the
reactor, the cold reservoir is the radiator
emitting heat into space and the useful power
is supplied to the laser. Eq.(2) follows from
considering the conservation of energy.

Pw = Pn − Pl (2)

As the radiator emits power Pw and by assuming
an emissivity of 1, we get Eq.(3) [4], with A the
area of the radiator, and σ the Stefan-Boltzmann
constant.

Pw = AσT 4
c (3)

We also define φ as the area per unit mass of
the radiator, and θ as the power output per



unit mass of the reactor, hence Eqs.(4) and (5).

A = Mrφ (4) Pn = Mnθ (5)

Then we set Eq.(3) equal to Eq.(2), rearrange
for Tc, and substitute the result into Eq.(1).
By replacing A and Pn with Eq.(4) and Eq.(5)
respectively, we get Eq.(6).

Pl
Mnθ

= 1 −

(
Mnθ−Pl
Mrσφ

) 1
4

Th
(6)

The total mass of the power system Mt is given
by Mt = Mn + Mr. Rearranging Eq.(6) for Mr

and substituting this into Mt gives Eq.(7).

Mt = Mn +
Mnθ − Pl

σφT 4
h

(
1 − Pl

Mnθ

)4 (7)

Minimising mass

To find the minimum total mass it would appear
logical to find the differential ∂Mt

∂Mn
and set it

equal to 0 to find a turning point. Unfortunately,
the differential in question is a fifth order
polynomial and cannot be solved analytically.
We therefore adopt a graphical method to find
the turning point. Before the graph can be
plotted values for the variables θ, φ, Pl and Th
must be fixed. Pl has been calculated in the
introduction.

A typical nuclear reactor core has θ = 40
kWkg−1; this value was calculated by dividing
the thermal power output of a reactor core by the
core’s fuel mass [5]. For current fission reactors
Th is around 600 K, as found from the outlet
temperature [5].

We use φ = 0.036 m2kg−1. This was derived
from the area and mass of the thermal control
radiators on the ISS [6] which are 1100 kg with
a double sided area of 23 m x 3.4 m.

Fig.(1) shows Eq.(7) for reactor masses
ranging from 1 × 1023 kg to 5 × 1023 kg. The
turning point is marked and found to occur at
Mn = 1.9 × 1023 kg, at which point Mt =
6.8 × 1025 kg. The difference of these masses is
the value of Mr required for the radiators which
act as the cold reservoir.

Figure 1: A plot of the relationship between the
total mass, Mt, and mass of the reactor, Mn.
The minimum total mass occurs at the turning
point, marked by the red circle and lines.

Conclusion

We find that the minimum mass for a
Death Star’s power system built using current
technology is Mt = 6.8 × 1025 kg. It must be
noted that a complete Death Star would also
include the mass of: the laser, the laser’s built-in
cooling equipment, a structural framework and
a non-zero-mass Carnot engine. A power source
of higher θ or Th than current technology could
reduce the mass needed. We conclude that, on
the grounds of the mass required, a complete
Death Star using current technology would not
be easy to confuse with a “small moon” [1].
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